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APPLICATION OF THE FUNCTIONAL CALCULUS TO SOLVING OF INFINITE
DIMENSIONAL HEAT EQUATION

In this paper we study infinite dimensional heat equation associated with the Gross Laplacian.
Using the functional calculus method, we obtain the solution of appropriate Cauchy problem in the
space of polynomial ultradifferentiable functions. The semigroup approach is considered as well.
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INTRODUCTION

The mathematical framework of white noise analysis, which was founded in works of
Yu. Berezansky, Yu. Samoilenko [1] and T. Hida [5], is based on an infinite dimensional ana-
logue of the Schwartz distribution theory.

In 1967 L. Gross [4] introduced Laplacian Ag on an abstract Wiener space as a natural in-
finite dimensional analogue of the finite dimensional Laplacian and studied potential theory
associated with Ag. Within the white noise framework, the Gross Laplacian has been formu-
lated by Kuo in [8] as a continuous linear operator acting on test white noise functions. The
Gross Laplacian and appropriate Cauchy problem have been studied for example in [2, 9].

The aim of this work is to use the functional calculus constructed in [12] in order to solve
the infinite dimensional heat equation associated with the Gross Laplacian.

1 PRELIMINARIES

1.1 Spaces of functions

Denote Z; := {0} UN and o := 9*/9tk. Fix any real B > 1. An infinitely differen-
tiable function ¢ is called an ultradifferentiable function of the Gevrey class (see [7]) if for
each segment [y, v] C R there exist constants # > 0 and C > 0 such that the inequality
SUP;c[1,4] 0@ (t)| < CH*K*P holds for all k € Z.,. For a fixed i > 0 let us consider the subspace

Fo(t)]
Qh[y,v] ={p e C”:suppo C [u,v], ||l¢llgi,, = sup sup 7’ < ool
P { Gl keZy te[u,v) h kP }
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314 SHARYN S.V.

Each subspace gg [i,v] is a Banach space (see [7]) and all maps Qg n,v] & gé (i, v] with
h < I are compact inclusions. Consider the space

Gp = U Qg[y,v], Gg ~ limind Qg[y,v],

J<v >0 u<v,h>0

of Gevrey ultradifferentiable functions with compact supports and endow it with topology of
inductive limit with respect to above mentioned compact inclusions. Let G ;3 be its dual space
of Roumieu ultradistributions.

Let i > 0 be any positive real and y,v € R be any reals such that 4 < v. In the space of
entire functions of exponential type we consider the subspace Eg[]/t, v] of functions with the

finite norm

[2p(z)e” )
¥l enp, 1 := sup sup , where Hp, ,1(17) :== sup 1.
Eﬁ[yﬂ keZ zeC hkKkP 2] teu,v]

Each space EE (i, v] is a Banach one, and all maps Eg[;/l, v] & Eg/ [/, V'] with [u,v] C [/, V],

h < I, are compact inclusions. Consider the space
Eg:= | Eplwvl,  Eg=~limind E4[u,v],

u<v,h>0 p<v, >0

and endow it with the topology of inductive limit with respect to above mentioned compact
inclusions.
Consider the Fourier-Laplace transformation

9(:) = (F)a) = [ e ™o, geGyzec

Let F': Ey — Gj; be the adjoint mapping. It is known [13], that F(Gg) = Ep and F'(Ey) = Gj.

1.2 Polynomial ultradifferentiable functions and polynomial ultradistributions

For any locally convex space X, let X @1 5 € N, be the symmetric nth tensor degree of X,
leted in th jective t topology. F X we denote x¥" == x® - - -
completed in the projective tensor topology. For any x € X we denote x IR -®x €

n
X" neN. Set ¥*0:=C,x*":=1€C.

To define the locally convex space P(”Ql’g) of n-homogeneous polynomials on Q!’3 we use
the canonical topological linear isomorphism P(”Qk) ~ ( é@)”)’ , described in [3]. We equip
P(”Qk) with the locally convex topology b of uniform convergence on bounded sets in g/g.
Set P(ng) := C. The space P(g/g) of all continuous polynomials on Qk is defined to be the
complex linear span of all P("Gg), n € Z,, endowed with the topology b. Let P'(G;) mean
the strong dual of P(Gj). Elements of the spaces P(Gg;) and P'(Gy) we call the polynomial
test ultradifferentiable functions and polynomial ultradistributions, respectively.

Denote

T(Gg) == @fmg!;@"c @ g5"  and  T(Gp) = X gy

neZ ﬂEZ+ neZ
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Note, that we consider only the case when the elements of direct sum consist of finite but not
fixed number of addends. It is well known [11, 4.4], that (T (Qk), ['(Gp)) is a dual pair with
respect to the bilinear form

<f,p>:< X fur @D Pn>: i (faspn), pPET(G), feT(Gp), (1)

HEZ+ I’ZEZ+ H€Z+

where p,, € Ql;é” and f, € Q;S@" ~ (QE)”)’.
By analogy we can construct the dual pairs (T (Ej), I'(Eg) ) and (P'(Ej), P(Ep) ).
We have the following assertion (see also [10, Proposition 2.1]).

Proposition 1.1. There exist the linear topological isomorphisms
Y:P'(Gy) — T(Gy),  ¥:P'(E;) — T(Ep).
Using the Proposition 1.1 and tensor structure of the space I'(G 1’3), we extend the map F'~!

onto I'(G }g) First, for elements of total subset of the space G /g@’” we define the operator /" :

Fon —y fon F1E0.— I where f2" := (F'-1£)". Next, we extend the map F'®" onto whole

space G ;3®” by linearity and continuity. As a result we obtain the map F'®" € Z(G !’3@", E;;@")
And finally, we define the mapping F'® by the formula
F'O= (F¥") :T(Gg) > f = (fu) +— fi= (fn) € I'(Ep),
where f,, € Q}g@’”,ﬁq = F®nf, e El’f’”.
The following commutative diagram
Fi
P'(Gy) ———P'(Ep)
v| v @

r(gp) 7 T(E

uniquely defines the operator Fy° € £ (P’ (Gg), P'(Ep))-

2 CONVOLUTION OF POLYNOMIAL ULTRADISTRIBUTIONS

Let g € Gg. Define the shift operator on the space P(Gg) with the formula

FP(f)=P(f+g),  PEP(Gy), feTh

It is easy to see, that .7 is a linear continuous operator from the space P (G [’3) into itself.

Let the symbol ©; denotes the (right) k-contraction [6] of symmetric tensor product, i.e.,
8 @ 9% = (g, 0) 9",k <5,g € G}, 9 € Gp.

Let us show, that for any g € Q;S the shift operator ; acts as follows P = >}, (- ©", p,)

~

TP =3, (- ", qun), where p,, q, € gff’”, n=0,1,...,m m = deg P, and the elements g, can
be obtained by the formula
m-—n
(n+k)!
qn = Z T

nlk! g®k @k Pn+k-

k=0
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Without loss of generality we can prove this for polynomials of view Py, = >t o( - @, 9®F),
where (1, ¢, 9®2,...,¢%™,0,...) € I(Gp),pcGpmeZ,.
Indeed,

Z C]Cl <f®n ®g®(k—n), (P®k>
n=0
m—n

TgPom(f) = Pom(f + ) ok ok _

I
]
<
_l_
=

®
RNgE

o~
Il
o
o
o

CZ+k <f®n ®g®k’ qD@(n+k)>
=0

I
Ms

I
M=

m
ZCIZI f®n®g ®(k—n) g0®k>

n

3
Il
S

3
Il

0k

! Z n+k g' k ®n>
=5 (S e,

Let us define the convolution of a polynomial ultradlstrlbutlon uetp (glg) and a test
function P € P(g/g) with the formula (U * P)(g) := (U, Z,P), g € Qk, where in the right side
there is the pairing of the dual pair (7'(Gg), P(Gp)) (see Proposition 1.1 and formula (1)).

If U € P'(Gg) and P € P(Gy) are represented in the form U = X (uy, -@M and P =

nezZ

=

Cr o (FO", (g, 9) ™)

[
=
JgMS
-
o
||
[ NgE
/\ b

3|l

Z (-®", p,) respectively, then the convolution may be written in the explicit form

m - o m—
U*P Z <u”’ Z Cn+kg ©k pn+k> = Z Z n+k un®g /pn+k>
ok . ©
- Z Z n+k un On Puvk) = Z <g®k, Z CZ+kun Oy pn+k>-
= k=0 n—=0

It is clear, that g5 = an_o Chiiiln ©n Py belongs to the space Q?k foreachk =0,1,...,m. It
follows, that the convolution U * P is a polynomial from the space P (G ;3)

For any polynomial ultradistribution U € P’(G [’3) the mapping Cy;, defined with the for-
mula Cy; : P(Q;;) >P— UxP e P(Q;;), is said to be the convolution operator, associated
with U.

Let us show, that the composition of two convolution operators Cy and Cy;, associated with
any V,U € P'(G ;3), is a convolution operator, associated with some polynomial ultradistribu-
tion, which we denote by V x U. Let V,U € P’ (g;;) and P € P(gg) are represented in the

m

form V. = X (g%, -9"), U = X (f*",-“")and P = Z (-®", ") respectively, where
nezy nez n=0
f,8 €Gp ¢ € G
Using formula (3), we obtain the following equalities.
m
(CyoCu)(P)=Vx(UxP) = (" Z Q8 @)
n=0

= i < . Z Cn+]g®] @f (mzn ]Cn+]+kf®k ©k ¢®(ﬂ+j+k))>

n=0
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m n )
=2 (- Y G Chalg @) (f 9) ™)
n=0 j=0 k=0
m m—n
_ ®n (”"‘]"‘k)!( ®j 5 (ok ®(n+j+k)
= , - Rf) @jr @
ford < o n!jlk! >
m m-—n n+s | S
— Z < ®n, ( n|su) Z - '( ®]®f®k)@ ¢ (n+s)>
n=0 s=0 o j+k:s]
m m—n n+s)! .
_ Z ( n|su) Z T '< ®n (g®]®f®k) ©s q)®(n+s)>
n=0 s=0 o j+k:s]'
& (1 45)! < BN B & FOK o® (n+s)
= ®g°I&f )
m
= Z< 2 ]lk|g®]®f®k Z Corvs(- ") ©n (P®(H+S)>'

s=0 j+k=s =0

It follows, that the composition Cy o Cy; is the convolution operator, associated with

viu= X (Y ,k,g®f®f®" 1) € P(Gh). (4)
neZy  j+k= n
For any polynomial ultradistribution U € P’(Gy) let us define the formal series
1
el = Z =u, where U™ :=Ux---xU. 5)
! %/_J
nezy n

Note, that each partial sum of this series belongs to the space P’(G }g)

3 HEAT EQUATION ASSOCIATED WITH THE GROSS LAPLACIAN

Let {U; : t € J} be a family of elements from the space P'(G k), let ] be an arbitrary interval
[0,a], x € R, « > 0. Let us assume, that the function t — Uj; is a continuous map from |
into P'(G ;3) Then the function t — F7°U; is continuous map from J into P’ (E;S), where the

mapping F7’ is defined with formula (2). Therefore, for each t € | the set { F°Us : s € [0, 4]}
is a compact subset in P’ (E’ﬁ) In particular, it is bounded. It follows, that the element

t
JO ]-‘,;)® U ds,

belongs to the space P’ (E;s) for each t € J. Hence, in the space P’ (Q[’;) there exists a unique

element, which we denote Sé U, ds, such that
t t
0 0

Moreover, the map E; = S(t) Usds, t € ], is differentiable and satisfies the equality %Et = Uy.
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Let {U; : t € J} be any described above family of elements from P’ (glg) Let us consider

the Cauchy problem
d
=Xy =UWUx Xy, te],
{ ot (6)

Xo =P, Pec P(Q/g).

Theorem 1. Cauchy problem (6) has a unique solution in P(gl’;), which can be presented in
the view t
Xp=etholsdsyp  peg )

* Sé U ds

where e is treated in the sense of the formula (5).

Proof. Using Picard’s iteration, the solution X; of Cauchy problem (6) is written informally
in the form (7). Since the polynomial P € P(g;;) has a finite number of addends, a value

of e*loUsds 4 p depends on some partial sum of the series e* folsds Formula (3) implies that
solution (7) belongs to the space P (G k) O

As an application of Theorem 1 we consider the generalized heat equation, associated with
the Gross Laplacian.
Let the trace operator T be defined by

(T, 929) : fﬁo dt, ¢, € Gp.

It is clear, that T € ,Z(Q?Z,C) = (g?z)’ ~ g/g®2.
The Gross Laplacian Ag by definition (see e.g. [8]) is the following operator

m—2

Ag:P= Z D) — AP = ) (n+2)(n+1)(T,9%%)( - ©",9%"), ¢ € Gp.
n=0

Theorem 2. The Gross Laplacian Ag acts as a convolution operator, i.e.

1
58P =UcxP,  Pe P(Gp),

where U is a polynomial ultradistribution from the space P’ (Qk), that corresponds to the
element (0,0,7,0,...) € F(gé).

Proof. The polynomial ultradistribution U can be written in the form

u’l’ - >< <u’l’,?l/ ‘®n> = (OrO/ <T/ '®2>70/-..)!
nez
where u,, = tifn =2and u,, = 0if n #2.
Let the polynomial P € P(Gg) be of the form P = Yino(- " 9%"), ¢ € Gg. Using equali-
ties (3), we obtain the required result

m—2

m m—n
Urx P =3 (- 3 Chapmek @k g0 H) = 37 (-9, C ot 029%02)
n k=0 n=0
m—2

= > Caio(T, ) (- O, ) = —AGP
n=0
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Theorem 3. Cauchy problem

{%Xt =1IAcX:, te], -

Xo="P, P € P(Gp),
for heat equation, associated with the Gross Laplacian, has a unique solution in P(g[g) given
by
X; = e*tUr 4 P, te.

Proof. Theorem 2 allows us to rewrite the heat equation in the view %Xt = U * X;. It follows
from Theorem 1 that the Cauchy problem has a unique solution given by

Xy = e*géufdS x P = *tUr 4 P,
We can rewrite it in explicit form. Using formula (4), let us find (tU.)*". For n = 2 we obtain

41
(t) * (tU;) = X <t2 » T uT,]®uTk, > (0,0,0,0, 5 #(x2,-4),0,...),
nez ]+k n

since 1+, does not vanish only for n = 2. Using the mathematical induction, it is easy to prove
that

2n)!
(tU)™" = (0,...,0, (2’1) (TN, ) 0, ).
2n
It follows
ettt — Z a(tuﬁ n_ Z H(O""’O’ T t”<T®n, _®2n>’01.“)
neZ neZ4 m
(21’1)! " 9)

= (1,0,t(t, - ¥2),0,3t*(%2, - ®4),0,...,0, (T, B2 0,..).

n! 2n
.

2n-th place

It only remains to find the convolution e*U= x P. Let the polynomial P € P(G ;3) be written in

the form P = 7" (- ®", ¢®"), ¢ € Gg. For any n € Z, let us denote ey, := (Zn”,) L1 and

e2nt1 := 0. Then e*!Ur can be rewritten as e*'Ur = X nez, (en, - “"). Therefore, we obtain

m—n

m m—n m 2
et p =) < <MY Cok Ok €0®(n+k)> =D < SO Y CRlokenr O §0®(n+2k)>
n=0 k=0 n=0 k=0

Lm;n

m ] n ! | $k
Z < Lon Y ((2‘;{‘)'2:? (2kk!>~%<r®k’ q)®2k>q)®n>

k=0

m 122 (n +2k)! t*
= Z Z kin! et 2k<T®k' g=H) (- P 9"T),

where the symbol L : J denotes the floor function.

Hence, if the polynomial P from (8) has the form P = Y7 (- ®", p,), pn € Q®” then
the solution of Cauchy problem for heat equation associated with the Gross Laplac1an can be
expressed as

m |27 P
Xt = Z < : ®n/ kZ;) %;k @Zk pn+2k>
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4 SEMIGROUP GENERATED BY THE GROSS LAPLACIAN

Our next goal is to construct an one-parameter semigroup {G; : t > O} with the infinitesi-
mal generator %AG. This semigroup can be formally expressed as G; = e t1¢,
Since %AGP = Uy * P, results of previous section imply

o (4 2k)!
Z Z nklnl : 2k<T®kf 97N (- ), (10)

where P = 37" (- ®", ¢®"), ¢ € Gg.

Proposition 4.1. The mapping Ry > t — G; € .,2”(73(9%)), where G; is defined by formula
(10), is a strongly continuous one-parameter semigroup of continuous linear operators from
PG [’3) into itself with infinitesimal generator 1Ac.

Proof. Formula (10) can be rewritten as

S Lm;nj P
n+2k)!t
GtP =P+ E E ( Py ) 2k <T®k, q)®2k>< . ®ﬂ’ ¢®n>, (11)
n=0 k=1 o

therefore the equality Gy = pr(%) is clear.
Formulas (4), (9) and the following equalities

1 1 1
G;Gg = e'28605386 — p*tlr  prsle _ ()l _ ,(t+s)78c — Giys

imply the semigroup property G;Gs = G¢s.
To prove the strong continuity of the semigroup, we need to show that for any P € P(G ;3)
the function t — G;P is continuous. Using representation (11), we obtain

m 2] r
l1msup\GtP P\—hmsup)z Z Mt—(r®k,¢®2k><f®”,(p®">

= & kln! 2k
R o |t| .
<limsup 31 3 g (T IS o)
m LmEnJ k
_ n n (Tl—I—Zk ‘t’ 2k\| __
= 2 sup [(f* 9™)lim D, ST [ 9| = 0.

k=1

It remains to show that the Gross Laplacian is the generator of the semigroup G;. Using
representation (11), we can write

GP-P 1, m U2 ) opy e
3t Z TR (T, ) (- O, 0)
n—|—2 (n+1)
DL 7, oy o, gomy

n=0
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Note, that L@J = 0 forn = m — 1 and for n = m. So, we can rewrite the above equality

GP—P 1 m—2 \_mEnJ (1’1 + Zk)' tkfl ok @k
P gaar= 2 (3 P e e
n=0 k=1
n+2)(n+1
_( )2( )<r, q)®2>>< L On o)

It is clear that 2K £ (pok (@2k) — w (T, 2) with k = 1, therefore

k!n! 2k

GP—-P 1 2 L) (n+2k) 1 o oo
- EAGPZ ZO < kzz W7<T® , 9% >>< L1, p®n),
n= =

Note, that | 252 | =1 for n = m — 2 and for n = m — 3. So, we obtain

GP—-P 1 s L) (n+2k) 1 o oo
R I =L ) [
n—= =

From the above formula we can derive the required result

lim su
t—0 f

p| SEL =P 1, i)

m—n

m—4 2 J k—1
. n+ 2k)!|t
< Z Sl}lp ‘<f®n’ ¢®n>} lim Z ( e ) ’ ‘2]( ‘<T®k, ¢®2k>‘ —0.
n=0 k=2 o

t—0

Corollary 4.1. Cauchy problem

SXp = 306X, te€],
Xo =P, P e P(%),

for heat equation associated with the Gross Laplacian has a unique solution in P (G ;3) given by

(1]

(2]

(3]
(4]
(5]

X; = G4P, fE].
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MIapwn C.B. 3acmocysanns ¢yHKyioHaIbH020 uucaeHHs 00 po3s’a3anHs 3a0aui Kousi 019 HecKiHueHHOB-
MipHoeo pieHaHHa mennonposionocmi // KapmaTchki MaTeM. my6a. — 2016. — T.8, Ne2. — C. 313-322.

Y it poboTi MU BUBYAEMO HeCKiHUEHHOBMMIipHe PiBHSIHHSI TEILAOIPOBIAHOCTI, TIOPOAXKeHe Aa-
naacianom I'pocca. BukopucroByioun MeToA (pyHKIIOHAABHOTO YMCAEHHSI, MV OTPUMYEMO PO3B’sI-
30K BiAmoBiaHOI 3aaaui Komri y mpocTopi noAiHoMiaAbHIMX yABTpaandpeperIIiioBamX pyHKIIiin. Ta-
KO PO3TASIHYTO HaMiBrPYyTOBMIA MAXiA PO3B’sI3aHHS TaKoi 3aAadi.

Kniouosi cnosa i ¢ppasy: HeCKiHUEHHOBMMIpHe piBHSIHHS TEILAONpPOBIAHOCTI, Aamaaciad I'pocca,
IIPOCTip TOAIHOMIaABHVX YABTpaAVdrepeHIioBHMX PYHKIIIMN, TPOCTip MOAIHOMIaABHMX yABTpa-
PO3MOAiAiB.



