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METRIC SPACES INVOLVING A GRAPH

Some new coupled coincidence and coupled common fixed point theorems for ϕ− ψ−contrac-
tion mappings are established. We have also an application to some integral system to support the
results.
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INTRODUCTION AND PRELIMINARIES

In 2009, Lakshmikantham and Ćirić [2] introduced a generalization of monotonicity that
called mixed g-monotone property. The authors established some coupled coincidence and
coupled fixed point results related the mappings have mixed g-monotone property in the par-
tially ordered metric space.

Definition 1 ( [2]). An element (x, y) ∈ X2 is said to be a coupled coincidence point of a
mappings F : X2 → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 2 ( [2]). An element (x, y) ∈ X2 is said to be a coupled common fixed point of the
mappings F : X2 → X and g : X → X if F (x, y) = gx = x and F (y, x) = gy = y.

Definition 3 ( [2]). Let X be a nonempty set and F : X2 → X and g : X → X. We say F and g
are commutative if gF (x, y) = F (gx, gy) for all x, y ∈ X.

Now, we furnish the following class of auxiliary functions which will be used densely in
the sequel.

Definition 4 ( [11]). Let Φ denote all functions ϕ : [0, ∞)→ [0, ∞) , which satisfy following:

(ϕ1) ϕ is continuous and non-decreasing;

(ϕ2) ϕ (t) = 0 iff t = 0;

(ϕ3) ϕ (t + s) ≤ ϕ (t)+ ϕ (s) for all t, s ∈ [0, ∞) and Ψ denote all functions ψ : [0, ∞)→ [0, ∞) ,
which satisfy (ψ1);
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(ψ1) ψ is continuous function with the condition ϕ (t) > ψ (t) for all t > 0.

By (ϕ1), (ϕ2) and (ψ1) we have that ψ (0) = 0.

Next, we give the following coupled fixed point theorems as the main results of Işık and
Türkoğlu [11].

Theorem 1 ( [11]). Let (X,≤, d) be a complete partially ordered metric space. Suppose that
F : X2 → X is a mapping having the mixed monotone property on X. Assume there exists
ϕ ∈ Φ and ψ ∈ Ψ such that

ϕ (d (F (x, y) , F (u, v))) ≤ 2−1 × ψ (d (x, u) + d (y, v)) (1)

for all x, y, u, v ∈ X with x ≥ u and y ≤ v.
Suppose that either

(a) F is continuous or;

(b) X has the following properties:

1) if a non-decreasing sequence {xn} → x, then xn ≤ x for all n,

2) if a non-increasing sequence {yn} → y, then y ≤ yn for all n.

If there exist two elements x0, y0 ∈ X with x0 ≤ F (x0, y0) and y0 ≥ F (y0, x0). Then F has a
coupled fixed point.

The existence of fixed points of contraction mappings in metric space endowed with graph
has been initiated by Jachymski [4]. Fixed point theorems for single valued and multivalued
operators in such metric spaces have been studied by some authors since 2007 (see [5]— [10]
and so on).

Let (X, d) be a metric space, ∆ be a diagonal of X2, and G be a directed graph with no par-
allel edges such that the set V (G) of its vertices coincides with X and ∆ ⊆ E (G), where E (G)

is the set of the edges of the graph. That is, G is determined by (V (G) , E (G)). Furthermore,
denote by G−1 the graph obtained from G by reversing the direction of the edges in G. Hence,
E
(
G−1) = {(x, y) ∈ X2 : (y, x) ∈ E (G)

}
.

Definition 5 ( [4]). A function g : X → X is G−continuous if

(a) for all x, x∗ ∈ X and any sequence (ni)i∈N of positive integers, (xni) → x∗ and(
xni , xni+1

)
∈ E (G), for n ∈ N, implies g (xni)→ gx∗;

(b) for all y, y∗ ∈ X and any sequence (ni)i∈N of positive integers, (yni) → y∗ and(
yni , yni+1

)
∈ E

(
G−1), for n ∈ N, implies g (yni)→ gy∗.

Definition 6 ( [9]). Let (X, d) be a complete metric space, G be a directed graph and
F : X× X → X be a mapping. Then

(i) F is called G−continuous if for all (x, y), (x∗, y∗) ∈ X2 and for any sequence (ni)i∈N
of positive integers such that (xni) → x∗, (yni) → y∗ as i → ∞ and

(
xni , xni+1

)
∈ E (G),(

yni , yni+1
)
∈ E

(
G−1), for n ∈ N, implies F (xni , yni) → F (x∗, y∗) and

F (yni , xni)→ F (y∗, x∗) as i→ ∞;
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(ii) (X, d, G) has property A if (a) for any sequence (xn)n∈N in X with (xn) → x∗ as n →
∞ and (xn, xn+1) ∈ E (G) for n ∈ N, then (xn, x∗) ∈ E (G); (b) for any sequence
(yn)n∈N in X with (yn) → y∗ as n → ∞ and (yn, yn+1) ∈ E

(
G−1) for n ∈ N, then

(yn, y∗) ∈ E
(
G−1) .

Consider the set CCoinFix (Fg) of all coupled coincidence points of mappings F : X2 → X,
g : X → X and the set

(
X2)

Fg as follows:

CCoinFix (Fg) =
{
(x, y) ∈ X2 : gx = F (x, y) and gy = F (y, x)

}
and(

X2
)

Fg
=
{
(x, y) ∈ X2 : (gx, F (x, y)) ∈ E (G) and (gy, F (y, x)) ∈ E

(
G−1

)}
.

In 2016, Eshi et al. [12] introduced the concept of G− g−contraction mapping as follows.

Definition 7 ( [12]). F : X2 → X is called G− g−contraction if:

(i) g is edge preserving, i.e.,(gx, gu) ∈ E (G) and (gy, gv) ∈ E
(
G−1) ⇒

(g (gx) , g (gu)) ∈ E (G) and (g (gy) , g (gv)) ∈ E
(
G−1);

(ii) F is g−edge preserving, i.e.,(gx, gu) ∈ E (G) and (gy, gv) ∈ E
(
G−1) ⇒

(F (x, y) , F (u, v)) ∈ E (G) and (F (y, x) , F (v, u)) ∈ E
(
G−1);

(iii) for all x, y, u, v ∈ X such that, (gx, gu) ∈ E (G) and (gy, gv) ∈ E
(
G−1),

d (F (x, y) , F (u, v)) ≤ k
2 [(gx, gu) + (gy, gv)], where k ∈

[
0, 1

2

)
is called the contraction

constant of F.

Proposition 1 ( [12]). If F : X2 → X is g−edge preserving and F
(
X2) ⊆ g (X). Also, let

(xn)n∈N, (yn)n∈N, (un)n∈N and (vn)n∈N be sequences in metric space (X, d) endowed with a
directed graph G. Then

(a) (gx, gu) ∈ E (G) and (gy, gv) ∈ E
(
G−1) ⇒ (F (xn, yn) , F (un, vn)) ∈ E (G) and

(F (yn, xn) , F (vn, un)) ∈ E
(
G−1) for all n ∈ N;

(b) (x, y) ∈
(
X2)

Fg ⇒ (F (xn−1, yn−1) , F (xn, yn)) ∈ E (G) and (F (yn−1, xn−1) , F (yn, xn)) ∈
E
(
G−1) for all n ∈ N;

(c) (x, y) ∈
(
X2)

Fg ⇒ (F (xn, yn) , F (yn, xn)) ∈
(
X2)

Fg for all n ∈ N.

In this paper, we prove coupled coincidence and coupled common fixed point theorems for
contaction mappings in metric spaces endowed with a directed graph. Our results extend and
improve the results obtained by Eshi et al. in [12], Işık and Türkoğlu in [11], Chifu and Petrusel
in [9] so on. Moreover, we have an application to some integral system to support the results.

1 MAIN RESULTS

Definition 8. Let (X, d) be a complete metric space endowed with a directed graph G. The
mappings F : X2 → X, g : X → X are called a ϕ− ψ−contraction if:

1) g is edge preserving, F is g−edge preserving;
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2) there exists ϕ ∈ Φ and ψ ∈ Ψ such that for all x, y, u, v ∈ X satisfying (gx, gu) ∈ E (G)

and (gy, gv) ∈ E
(
G−1) ,

ϕ (d (F (x, y) , F (u, v))) ≤ 2−1 × ψ (d (gx, gu) + d (gy, gv)) . (2)

Lemma 1. Let (X, d) be complete metric space endowed with a directed graph G, and let
F : X2 → X, g : X → X be a ϕ− ψ−contraction and F

(
X2) ⊆ g (X). Also, let (xn), (yn) be

sequences in X. If for each (x, y) ∈
(
X2)

Fg, then

ρn := d (gxn+1, gxn) + d (gyn+1, gyn)→ 0 as n→ ∞.

Proof. Let x0, y0 ∈ X. Since F
(
X2) ⊆ g (X), we can constitute x1, y1 ∈ X such that

F (x0, y0) = gx1 and F (y0, x0) = gy1. Again, we can constitute x2, y2 ∈ X such that
F (x1, y1) = gx2 and F (y1, x1) = gy2. Continuing this procedure above we obtain sequences
(xn) and (yn) in X such that

gxn = F (xn−1, yn−1) and gyn = F (yn−1, xn−1) (3)

for all n ≥ 1, x = x0 and y = y0. Let (x0, y0) ∈
(
X2)

Fg such that (gx0, F (x0, y0)) =

(gx0, gx1) ∈ E (G) and (gy0, F (y0, x0)) = (gy0, gy1) ∈ E
(
G−1). Then, by Proposition 1 (b),

we get (F (xn−1, yn−1) , F (xn, yn)) ∈ E (G) and (F (yn−1, xn−1) , F (yn, xn)) ∈ E
(
G−1). Thus

we have that (gxn, gxn+1) ∈ E (G) and (gyn, gyn+1) ∈ E
(
G−1) for all n ∈ N. Using the

ϕ− ψ−contaction (2) and (3), we have that

ϕ (d (gxn+1, gxn)) = ϕ (d (F (xn, yn) , F (xn−1, yn−1)))

≤ 2−1 × ψ (d (gxn, gxn−1) + d (gyn, gyn−1)) and
(4)

ϕ (d (gyn+1, gyn)) = ϕ (d (F (yn, xn) , F (yn−1, xn−1)))

≤ 2−1 × ψ (d (gyn, gyn−1) + d (gxn, gxn−1))
(5)

for all n ∈ N. From (4) and (5) we get

ϕ (d (gxn+1, gxn)) + ϕ (d (gyn+1, gyn)) ≤ ψ (d (gxn, gxn−1) + d (gyn, gyn−1)) . (6)

From (ϕ3), we obtain that

ϕ (d (gxn+1, gxn) + d (gyn+1, gyn)) ≤ ψ (d (gxn, gxn−1) + d (gyn, gyn−1)) .

Regarding the properties ϕ and ψ, we conclude that

d (gxn+1, gxn) + d (gyn+1, gyn) ≤ d (gxn, gxn−1) + d (gyn, gyn−1) .

It follows that ρn := d (gxn+1, gxn) + d (gyn+1, gyn) is decreasing. Then limn→∞ ρn = ρ for
some ρ ≥ 0. Taking the limit as n → ∞ in (6), we have ϕ (ρ) ≤ ψ (ρ). From the properties ϕ

and ψ, we obtain that ρ = 0, and thus

ρn := d (gxn+1, gxn) + d (gyn+1, gyn)→ 0 as n→ ∞.
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Theorem 2. Let (X, d) be complete metric space endowed with a directed graph G, and let
F : X2 → X, g : X → X be a ϕ− ψ−contraction and F

(
X2) ⊆ g (X). Let g be G−continuous

and commutes with F. Suppose that:

(i) F is G−continuous, or

(ii) the tripled (X, d, G) has a property A.

Then CCoinFix (Fg) 6= ∅ iff
(
X2)

Fg 6= ∅.

Proof. Let CCoinFix (Fg) 6= ∅. Then there exists (x∗, y∗) ∈ CCoinFix (Fg) such that
(gx∗, F (x∗, y∗)) = (gx∗, gx∗) ∈ ∆ ⊂ E (G) and (gy∗, F (y∗, x∗)) = (gy∗, gy∗) ∈ ∆ ⊂ E

(
G−1).

It follows that (x∗, y∗) ∈
(
X2)

Fg, so that
(
X2)

Fg 6= ∅.
Now, suppose that

(
X2)

Fg 6= ∅. Then there exists (x0, y0) ∈
(
X2)

Fg, e.g.,
(gx0, F (x0, y0)) ∈ E (G), (gy0, F (y0, x0)) ∈ E

(
G−1). Then, by Proposition 1 (b), we get

(F (xn−1, yn−1) , F (xn, yn)) ∈ E (G) and (F (yn−1, xn−1) , F (yn, xn)) ∈ E
(
G−1). Thus we have

that
(gxn, gxn+1) ∈ E (G) and (gyn, gyn+1) ∈ E

(
G−1

)
(7)

for all n ∈ N. By Lemma 1, we have

ρn := d (gxn+1, gxn) + d (gyn+1, gyn)→ 0 as n→ ∞. (8)

Next, we shall prove that {gxn} and {gyn} are Cauchy sequences. If possible, assume that at
least one of {gxn} and {gyn} is not a Cauchy sequence. Then there exists ε > 0 for which
we can find subsequences

{
gxn(k)

}
,
{

gxm(k)

}
of {gxn} and

{
gyn(k)

}
,
{

gym(k)

}
of {gyn} with

n (k) > m (k) ≥ k such that

γk := d
(

gxn(k), gxm(k)

)
+ d

(
gyn(k), gym(k)

)
≥ ε. (9)

Farther, corresponding to m (k), we can choose n (k) in the manner that it is the smallest integer
for which (9) holds. Then,

d
(

gxn(k)−1, gxm(k)

)
+ d

(
gyn(k)−1, gym(k)

)
< ε. (10)

Using (9), (10), and triangular inequality, we obtain

ε ≤ γk < ε + d
(

gxn(k), gxn(k)−1

)
+ d

(
gyn(k), gyn(k)−1

)
. (11)

Letting k→ ∞ in (11) and by (8), we have

γk := d
(

gxn(k), gxm(k)

)
+ d

(
gyn(k), gym(k)

)
→ ε as k→ ∞. (12)

From the triangle inequality, we get

γk = d
(

gxn(k), gxm(k)

)
+ d

(
gyn(k), gym(k)

)
≤ d

(
gxn(k)+1, gxm(k)+1

)
+ d

(
gyn(k)+1, gym(k)+1

)
+ ρn(k) + ρm(k).
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From property ϕ, we have

ϕ (γk) ≤ ϕ
(

d
(

gxn(k)+1, gxm(k)+1

))
+ ϕ

(
d
(

gyn(k)+1, gym(k)+1

))
+ ϕ

(
ρn(k) + ρm(k)

)
≤ ϕ

(
d
(

F
(

xn(k), yn(k)

)
, F
(

xm(k), ym(k)

)))
+ ϕ

(
d
(

F
(

yn(k), xn(k)

)
, F
(

ym(k), xm(k)

)))
+ ϕ

(
ρn(k) + ρm(k)

)
≤ 2−1 × ψ

(
d
(

gxn(k), gxm(k)

)
+ d

(
gyn(k), gym(k)

))
+ 2−1 × ψ

(
d
(

gyn(k), gym(k)

)
+ d

(
gxn(k), gxm(k)

))
+ ϕ

(
ρn(k) + ρm(k)

)
≤ ψ (γk) + ϕ

(
ρn(k) + ρm(k)

)
.

(13)

Taking k→ ∞ in (13) and from (8) and (12), we obtain a following contradiction:

ϕ (ε) ≤ ψ (ε) + ϕ (0) = ψ (ε) .

Thus, {gxn} and {gyn} are Cauchy sequences in X. As (X, d) is complete, there exists
x∗, y∗ ∈ X such that

gxn → x∗ and gyn → y∗ as n→ ∞. (14)

Since g be G−continuous, we have

g (gxn)→ gx∗ and g (gyn)→ gy∗ as n→ ∞.

Moreover as F and g are commutative

g (gxn+1) = g (F (xn, yn)) = F (gxn, gyn) , (15)
g (gyn+1) = g (F (yn, xn)) = F (gyn, gxn) . (16)

We now prove that
F (x∗, y∗) = gx∗ and F (y∗, x∗) = gy∗.

Suppose assumption (i) holds. From (15) and (16), we have

gx∗ = lim
n→∞

g (gxn+1) = lim
n→∞

F (gxn, gyn) = F (x∗, y∗) ,

gy∗ = lim
n→∞

g (gyn+1) = lim
n→∞

F (gyn, gxn) = F (y∗, x∗) ;

that is, (x∗, y∗) is a coincidence point of F and g.
Suppose now assumption (ii) holds. From (7) and (14), using property A, we get (gxn, x∗) ∈

E (G) and (gyn, y∗) ∈ E
(
G−1) for each n ∈N. By (2), we get

ϕ (d (gx∗, F (x∗, y∗)) + d (gy∗, F (y∗, x∗)))
≤ ϕ (d (gx∗, gxn+1) + d (gxn+1, F (x∗, y∗)) + d (gy∗, gyn+1) + d (gyn+1, F (y∗, x∗)))
≤ ϕ (d (gx∗, gxn+1)) + ϕ (d (F (xn, yn) , F (x∗, y∗)))
+ ϕ (d (gy∗, gyn+1)) + ϕ (d (F (yn, xn) , F (y∗, x∗)))
≤ ψ (d (gxn, gx∗) + d (gyn, gy∗)) + ϕ (d (gx∗, gxn+1)) + ϕ (d (gy∗, gyn+1)) .

Letting n → ∞, we obtain ϕ (d (gx∗, F (x∗, y∗)) + d (gy∗, F (y∗, x∗))) = 0. From properties ϕ,
we have d (gx∗, F (x∗, y∗)) + d (gy∗, F (y∗, x∗)) = 0. Hence, gx∗ = F (x∗, y∗) and
gy∗ = F (y∗, x∗).
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Definition 9. Let (X, d) be a complete metric space endowed with a directed graph G. The
mappings F : X2 → X, g : X → X are called a ψ−contraction if:

(i) g is edge preserving, F is g−edge preserving;

(ii) there exists ψ ∈ Ψ such that for all x, y, u, v ∈ X satisfying (gx, gu) ∈ E (G) and
(gy, gv) ∈ E

(
G−1) ,

d (F (x, y) , F (u, v)) ≤ 2−1 × ψ (d (gx, gu) + d (gy, gv)) .

Theorem 3. Let (X, d) be complete metric space endowed with a directed graph G, and let
F : X2 → X, g : X → X be a ψ−contraction and F

(
X2) ⊆ g (X). Let g be G−continuous and

commutes with F. Suppose that:

(i) F is G−continuous, or

(ii) the tripled (X, d, G) has a property A.

Then CCoinFix (Fg) 6= ∅ iff
(
X2)

Fg 6= ∅.

Proof. Taking ϕ (t) = t, along the lines of the proof of Theorem 2, we have the requested
results. By virtue of the analogy, we skip the details of the proof.

If we choose the functions ϕ (t) = t and ψ (t) = kt, for t ∈ [0, ∞) and k ∈
[
0, 1

2

)
in Theorem

2, we have the following corollary.

Corollary 1 ( [12]). Let (X, d) be complete metric space endowed with a directed graph G, and
let F : X2 → X be a G − g−contraction with contraction constant k ∈

[
0, 1

2

)
and F

(
X2) ⊆

g (X). Let g be G−continuous and commutes with F. Suppose that (i) F is G−continuous, or
(ii) the tripled (X, d, G) has a property A. Then CCoinFix (Fg) 6= ∅ iff

(
X2)

Fg 6= ∅.

Remark 1. In the case where (X,4) is partially ordered complete metric space, taking E (G) =

{(x, y) ∈ X× X : x 4 y}, the functions ϕ (t) = t and ψ (t) = kt, for t ∈ [0, ∞) and k ∈ [0, 1),
Theorem 2 generalize and improve the results obtained by Bhaskar and Lakshmikantham ( [1],
Theorem 2.1) and Chifu and Petrusel ( [9], Theorem 2.1). If we take the function ψ (t) = ϕ (t)−
ψ1 (t), for t ∈ [0, ∞), where ψ1 ∈ Ψ, Theorem 2 generalize the results given by Luong and
Thuan ( [3], Theorem 2.1). In Theorem 2, let g be the identity mapping. Then it is easy to see
that our conclusions enhance the results achieved by Işık and Türkoğlu [11].

Theorem 4. In addition to Theorem 2, suppose that for any two elements (x, y) , (x∗, y∗) ∈ X2,
there exists (p, r) ∈ X2 such that

(F (x, y) , F (p, r)) ∈ E (G) , (F (y, x) , F (r, p)) ∈ E
(

G−1
)

and

(F (x∗, y∗) , F (p, r)) ∈ E (G) , (F (y∗, x∗) , F (r, p)) ∈ E
(

G−1
)

.

Then, F and g have a unique coupled common fixed point.
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Proof. By Theorem 2, we have CCoinFix (Fg) 6= ∅. Suppose (x, y) , (x∗, y∗) are coupled fixed
points of F, e.g.,

gx = F (x, y) , gy = F (y, x) and gx∗ = F (x∗, y∗) , gy∗ = F (y∗, x∗) . (17)

Consider sequences {pn} and {rn} as follows

p0 = p, r0 = r, pn+1 = F (pn, rn) and rn+1 = F (rn, pn) for all n ≥ 0.

From assumption, we get

(F (x, y) , F (p, r)) = (gx, gp1) ∈ E (G) , (F (y, x) , F (r, p)) = (gy, gr1) ∈ E
(

G−1
)

and

(F (x∗, y∗) , F (p, r)) = (gx∗, gp1) ∈ E (G) ,

(F (y∗, x∗) , F (r, p)) = (gy∗, gr1) ∈ E
(

G−1
)

.

Since F is g−edge preserving, we have

(F (x, y) , F (p1, r1)) = (gx, gp2) ∈ E (G) , (F (y, x) , F (r1, p1)) = (gy, gr2) ∈ E
(

G−1
)

,

(F (x∗, y∗) , F (p1, r1)) = (gx∗, gp2) ∈ E (G) ,

(F (y∗, x∗) , F (r1, p1)) = (gy∗, gr2) ∈ E
(

G−1
)

.

Continuing this procedure above, we obtain

(gx, gpn) ∈ E (G) , (gy, grn) ∈ E
(

G−1
)

and

(gx∗, gpn) ∈ E (G) , (gy∗, grn) ∈ E
(

G−1
)

.

By (2), we have

ϕ (d (gx∗, pn+1)) + ϕ (d (rn+1, gy∗))
= ϕ (d (F (x∗, y∗) , F (pn, rn))) + ϕ (d (F (rn, pn) , F (y∗, x∗)))

≤ 2−1 × ψ (d (gx∗, gpn) + d (gy∗, grn)) + 2−1 × ψ (d (grn, gy∗) + d (gpn, gx∗)) .

By the property of ϕ, we have

ϕ (d (gx∗, gpn+1) + d (grn+1, gy∗)) ≤ ψ (d (gx∗, gpn) + d (gy∗, grn)) . (18)

By (ϕ1) and (ψ1), we have

d (gx∗, gpn+1) + d (grn+1, gy∗) ≤ d (gx∗, gpn) + d (gy∗, grn) .

Therefore, the sequence { fn} defined by fn = d (gx∗, gpn) + d (gy∗, grn), is a nonnegative
decreasing sequence, and consequently, there exists some f ≥ 0 such that

d (gx∗, gpn) + d (gy∗, grn)→ f as n→ ∞.

Suppose that f > 0. Then taking limit as n → ∞ in (18) and using the continuity of ϕ and ψ,
we get

ϕ ( f ) ≤ ψ ( f )
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which implies, from the properties of ϕ and ψ, that ψ ( f ) = 0 and eventually, f = 0. Hence

d (gx∗, gpn) + d (gy∗, grn)→ 0 as n→ ∞,

which implies
lim

n→∞
d (gx∗, gpn) = 0 = lim

n→∞
d (gy∗, grn) .

Similarly
lim

n→∞
d (gx, gpn) = 0 = lim

n→∞
d (gy, grn) .

By the triangular inequality we obtain

d (gx∗, gx) ≤ d (gx∗, gpn) + d (gpn, gx) , d (gy∗, gy) ≤ d (gy∗, grn) + d (grn, gy) , (19)

for all n ∈ N. Letting n → ∞ in (19), we obtain that d (gx∗, gx) = 0 = d (gy∗, gy). Hence, we
get

gx∗ = gx and gy∗ = gy. (20)

Let gx∗ = gx = t and gy∗ = gy = s.
Owing to commutativity of F and g, by (17), we have

g (gx∗) = g (F (x∗, y∗)) = F (gx∗, gy∗)⇒ gt = F (t, s) and

g (gy∗) = g (F (y∗, x∗)) = F (gy∗, gx∗)⇒ gs = F (s, t) .

Hence, (t, s) is a coupled coincidence point. Thus, by repeating previous argument for (x∗, y∗)
and (t, s) ,

gx∗ = gt⇒ t = gt and gy∗ = gs⇒ s = gs.

Therefore, t = gt = F (t, s) and s = gs = F (s, t). Hence, (t, s) is a coupled common fixed point
of F and g.

To show the uniqueness, suppose that (k, l) is another coupled common fixed point of F
and g. Hence,

k = gk = F (k, l) and l = gl = F (l, k) . (21)

By (20), we have
gk = gt = t and gl = gs = s. (22)

Thus, from (21) and (22), we get k = t and l = s. Then, k = gk = gt = t and l = gl = gs = s.

2 APPLICATION

We consider the following integral system:

x (t) = h (t) + λ
∫ t

−t
A (t, s, x (s) , y (s)) ds,

y (t) = h (t) + λ
∫ t

−t
A (t, s, y (s) , x (s)) ds,

(23)

for t ∈ [−T, T], T > 0, λ ∈ R.
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Recall that the Bielecki-type norm on X := C ([−T, T] , Rn),

‖x‖B = max
t∈[−T,T]

∣∣∣x (t) e−τ(t−T)
∣∣∣ for all x ∈ X,

where τ > 0, is arbitrarily chosen. Consider ‖x− y‖B = maxt∈[−T,T] |x (t)− y (t)| e−τ(t−T) for
all x, y ∈ X.

Define the graph G with partial order relation by

x, y ∈ X, x ≤ y⇔ x (t) ≤ y (t) for any t ∈ I.

Thus (X, ‖x‖B) is complete metric space endowed with a directed graph G.
If we take into consideration E (G) :=

{
(x, y) ∈ X2 : x ≤ y

}
, then ∆

(
X2) ⊆ E (G). On the

other hand E
(
G−1) :=

{
(x, y) ∈ X2 : y ≤ x

}
. Furthermore, (X, ‖x‖B , G) has property A.

Then
(
X2)

Fg =
{
(x, y) ∈ X2 : gx ≤ F (x, y) and F (y, x) ≤ gy

}
. We consider the following

conditions:

1. A : [−T, T]× [−T, T]× Rn × Rn → Rn and h : [−T, T]→ Rn are continuous;

2. for all x, y, u, v ∈ Rn with x ≤ u, v ≤ y we have A (t, s, x, y) ≤ A (t, s, u, v) for all t,
s ∈ [−T, T];

3. for all t, s ∈ [−T, T] and for all x, y, u, v ∈ Rn

|A (t, s, x, y)− A (t, s, u, v)| ≤ ψ (|x− u|+ |y− v|) ,

where ψ ∈ Ψ such that ψ (αt) ≤ αψ (t) for all t ∈ [−T, T] and for all α ≥ 0;

4. there exists (x0, y0) ∈ X2 such that

x0 (t) ≤ h (t) + λ
∫ t

−t
A (t, s, x0 (s) , y0 (s)) ds,

y0 (t) ≥ h (t) + λ
∫ t

−t
A (t, s, y0 (s) , x0 (s)) ds,

where t ∈ [−T, T] .

Theorem 5. Suppose that conditions (1)—(4) are satisfied. Then there exists at least one solu-
tion of (23).

Proof. Let F : X2 → X and g : X → X be defined as

F (x, y) (t) = h (t) + λ
∫ t

−t
A (t, s, x (s) , y (s)) ds, t ∈ [−T, T] ,

g (x) (t) = x (t) .

Then (23) can be indicated as

gx = F (x, y) and gy = F (y, x) . (24)
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By (24), the solution of this system is a coupled coincidence point of the mappings F and g, if
we prove the assumptions in Theorem 3.

Let x, y, u, v ∈ X be such that gx ≤ gu and gv ≤ gy,

F (x, y) (t) = h (t) + λ
∫ t

−t
A (t, s, x (s) , y (s)) ds

= h (t) + λ
∫ t

−t
A (t, s, g (x) (s) , g (y) (s)) ds

≤ h (t) + λ
∫ t

−t
A (t, s, g (u) (s) , g (v) (s)) ds

= h (t) + λ
∫ t

−t
A (t, s, u (s) , v (s)) ds = F (u, v) (t)

for all t ∈ [−T, T]. Therefore (F (x, y) , F (u, v)) ∈ E (G) .

F (v, u) (t) = h (t) + λ
∫ t

−t
A (t, s, v (s) , u (s)) ds

= h (t) + λ
∫ t

−t
A (t, s, g (v) (s) , g (u) (s)) ds

≤ h (t) + λ
∫ t

−t
A (t, s, g (y) (s) , g (x) (s)) ds

= h (t) + λ
∫ t

−t
A (t, s, y (s) , x (s)) ds = F (y, x) (t)

for all t ∈ [−T, T]. Therefore (F (y, x) , F (v, u)) ∈ E
(
G−1) . Then, F is g−edge preserving.

We shall show that F is ψ−contraction. We have

|F (x, y) (t)− F (u, v) (t)|

≤ |λ|
∫ t

−t
|A (t, s, x (s) , y (s))− A (t, s, u (s) , v (s))| ds

≤ |λ|
∫ t

−t
ψ (|x (s)− u (s)|+ |y (s)− v (s)|)

(
e−τ(t−T)eτ(t−T)

)
≤ |λ|

τ
ψ (‖x− u‖B + ‖y− v‖B) eτ(t−T)

for all t ∈ [−T, T]; therefore,

|F (x, y) (t)− F (u, v) (t)| e−τ(t−T) ≤ |λ|
τ

ψ (‖x− u‖B + ‖y− v‖B) . (25)

Applying maximum in (25), we have

‖F (x, y)− F (u, v)‖B ≤
|λ|
τ

ψ (‖x− u‖B + ‖y− v‖B) .

If we take τ such that |λ|τ = 1
2 ⇔ |λ| =

τ
2 , then F is ψ−contraction.

From assumption (4) show that there exists (x0, y0) ∈ X2 such that gx0 ≤ F (x0, y0) and
gy0 ≤ F (y0, x0), which implies that

(
X2)

Fg 6= ∅. Also, F and g are commutative.
On the other hand, by virtue of (1) and of the fact that (X, ‖x‖B , G) has property A we

get that (i) or (ii) from Theorem 3 is fulfilled. Hence, there exists a coupled coincidence point
(x∗, y∗) ∈ X2 of the mapping F and g, which is the solution of the integral system (23).
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[5] Beg I., Butt A.R., Radojević S. The contraction principle for set valued mappings on a metric space with a graph.
Comput. Math. Appl. 2010, 60 (5), 1214–1219. doi:10.1016/j.camwa.2010.06.003

[6] Bojor F. Fixed point theorems for Reich type contractions on metric space with a graph. Nonlinear Anal. 2012, 75 (9),
3895–3901. doi:10.1016/j.na.2012.02.009

[7] Alfuraidan M.R. The contraction principle for multivalued mappings on a modular metric space with a graph. Canad.
Math. Bull. 2016, 59, 3–12. doi:10.4153/CMB-2015-029-x

[8] Alfuraidan M.R. Remark on monotone multivalued mappings on a metric space with a graph. J. Inequal. Appl. 2015,
2015:202. doi:10.1186/s13660-2015-0712-6

[9] Chifu C., Petrusel G. New results on coupled fixed point theorem in metric space endowed with a directed graph.
Fixed Point Theory Appl. 2014, 2014:151. doi:10.1186/1687-1812-2014-151

[10] Suantai S., Charoensawan P., Lampert T.A. Common coupled fixed point theorems for θ − ψ−contractions map-
pings endowed with a directed graph. Fixed Point Theory Appl. 2015, 2015:224. doi:10.1186/s13663-015-0473-4

[11] Isik, H., Turkoglu, D. Coupled fixed point theorems for new contractive mixed monotone mappings and applications
to integral equations. Filomat 2014, 28 (6), 1253–1264.

[12] Eshi D., Das P.K., Debnath P. Coupled coincidence and coupled common fixed point theorems on a metric space with
a graph. Fixed Point Theory Appl. 2016, 2016:37. doi:10.1186/s13663-016-0530-7

Received 02.08.2016

Revised 28.11.2016

Йолакан Е., Кiзiлтанк Г., Кiр М. Теореми про точки спiвпадiння для ϕ−ψ−скоротних вiдображень
в метричних просторах еволюцiї графiв // Карпатськi матем. публ. — 2016. — Т.8, №2. — C. 251–
262.

У статтi отримано деякi новi теореми про зв’язнi точки спiвпадання та зв’язнi фiксованi
точки для ϕ− ψ−скоротних вiдображень. Також були отриманi застосування отриманих ре-
зультатiв у дослiдженнi iнтегральних систем.

Ключовi слова i фрази: зв’язна точка спiвпадання, зв’язна фiксована точка, вершина збере-
ження, напрямлений граф.


