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A CLASS OF JULIA EXCEPTIONAL FUNCTIONS

The class of p-loxodromic functions (meromorphic functions, satisfying the condition
f(gz) = pf(z) for some q € C\{0} and all z € C\{0}) is studied. Each p-loxodromic function
is Julia exceptional. The representation of these functions as well as their zero and pole distribution
are investigated.
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INTRODUCTION

Denote C* = C\{0}, and letg,p € C*, |q| < 1.

Definition 1. A meromorphic in C* function f is said to be p-loxodromic of multiplicator q if for
every z € C*

f(qz) = pf(2). (1)

Let £;, denotes the class of p-loxodromic functions of multiplicator g.

The case p = 1 has been studied earlier in the works of O. Rausenberger [9], G. Valiron
[11] and Y. Hellegouarch [5]. In his work [3, p. 133] which A. Ostrowski [8] called "besonders
schone und tiberraschende" G. Julia gave an example of a meromorphic in the punctured plane
C* function satisfying (1) with p = 1 for some non-zero ¢, |q| # 1, and all z € C*. He noted
that the family {f,(z)}, fu(2z) = f(9"z) is normal [7] in C* because f,(z) = f(z) forall z € C*.

If p = 1 the function f is called loxodromic. Loxodromic functions of multiplicator g form
a field, which is denoted by L,. The set L, forms an Abelian group with respect to addition.

It is obvious that a ratio of two functions from L, is a loxodromic function, and the deriva-

tive of the loxodromic function is p-loxodromic with p = %.

Remark 1. Every f = const belongs to L,, but the unique constant function belonging to L,
isf=0.

If f € L4y and a is a zero of f, then aq", n € Z, are as well. That is, in the case of non-
positive g the zeros of f lay on a logarithmic spiral. Let a = |a|e’, g = |q]e’7. Then the loga-
rithmic spiral in polar coordinates (r, ) takes the form

logr —logla| = k(¢ —w),
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where k = %. The same concerns the poles of f. The image of a logarithmic spiral on the
Riemann sphere by the stereographic projection intersects each meridian at the same angle
and is called loxodromic curve (Ao¢o( - oblique, dpouol - way). That is why we call (following
G. Valiron) the function from £, loxodromic.

Remark 2. If f € L, and z is its a-point, a € C U {co}, then q"z,n € Z, are its a-points too. In
the case, f € Ly, the previous considerations are valid only for the zeros and the poles of f.

It is easy to verify, that £;, forms the linear spaces over the fields C and L. Also it is clear
that £,, has the following properties.

Proposition. The linear space L, has the following properties.

1. Themap D : f(z) — zf'(z) maps Lgp to Lyp.
2. Themap D, : f(z J}())mapsﬁptoﬁ

) =2
3.fz) €Ly =fl)eL e

Let us give nontrivial example of p-loxodromic function of multiplicator 4. Put

(e 9]

(1—-4"z), 0<]q| <1

n=1

Definition 2. The function

Pe) = (-2 (1) = a-a [Ta-ga0-1)

is called the Schottky-Klein prime function.

This function is holomorphic in C* with zero sequence {g"}, n € Z. It was introduced by
Schottky [10] and Klein [6] for the study of conformal mappings of doubly-connected domains,
see also [2].

It is easy to obtain the following property of P

Plge) = —2P(2). )

Example 1. Consider the function

Using (2), it is easy to show that f € Lg.

1 THE NUMBERS OF ZEROS AND POLES OF p-LOXODROMIC FUNCTIONS IN AN ANNULUS
Let Aj(R) ={z € C:|g|R < |z| <R}, R>0and A; = A4(1).

Theorem 1. Let f € L;, and the boundary of A;(R) contains neither zeros nor poles of f.
Then f has equal numbers of zeros and poles (counted according to their multiplicities) in
every Ay(R).
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Proof. LetT'1 = {z € C: |z| = |g|R} and T, = {z € C : |z| = R} denote the circles bounding
A4(R). Let n(f) be the number of poles of f in Ag(R).
By the argument principle, we have

N [ re, 1o,
(7)== 3 Ibiok r[ Ead ©
Setting ¢ = gz in the second integral of (3), we obtain

(£) - = %r/ (5 - ) 2= @

2

Since f € Ly, the relation (1) implies
f'ez) = Ef'(2) )

Putting (1) and (5) in (4), we obtain the conclusion of the theorem. O

Remark 3. Every non-constant loxodromic function of multiplicator q has at least two poles
(and two zeros) in every annulus A;(R) [5]. As we see from Example 1, the p-loxodromic
function f has the unique pole z = 1 in A;. This is an essential difference between loxodromic
and p-loxodromic functions with p # 1.

2 REPRESENTATION OF p-LOXODROMIC FUNCTIONS

The representation of loxodromic functions from £; was given in [11], [5]. The following
theorem gives the representation of a function from Lg,.
Letay, ...,am and by, ..., by, be the zeros and the poles of f € L, in A, respectively. Denote

al ‘...'am

by by

Theorem 2. The non-identical zero meromorphic in C* function f belongs to Ly, p # 1, if
and only if there exists v € Z such that A = % and f has the form

A= (6)

"z )
P (i)
where c is a constant.

Proof. Firstly, denote

and consider the function
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Since the functions f and M have the same zeros and poles, it follows that their ratio g is

+00
holomorphic in C* function. Let g(z) = Y. c¢,z" be the Laurant expansion of g in C*. Using
n=—oo
relation (1) and the equality (2), we obtain
Ag(qz) = pg(z). ®)

According to (8), we obtain
—+00 —+o0
A Z cng'z" =p Z cpz"
n=—o0o n=—00

for any z € C*. This implies Ac,q" = pc, or c,(Ag" — p) = 0. Then there exists at least one
cy # 0,v € Z, such that
cv(Ag" —p) =0. )

Hence, the relation (9) implies g¥ = % We see also that ¢, = 0if n # v, so we have

¢(z) = cyz'. Thus, we can conclude

where c is a constant.
Secondly, we have f(z) = cz'M(z), v € Z. Show that it belongs to L. Thus, f(qz) =
cq'z" M(gz). Indeed, using (2), we obtain

fqz) = cq"z"AM(z2) = pf(2).

This completes the proof.
U

Corollary 1. Assume f € Ly, if f is holomorphic in C*, then f(z) = 0 or there exists k €
Z\{0} such that p = ¢* and f(z) = cz¥, where c is a constant. Conversely, a holomorphic in
C* function of the form f(z) = cz¥, where k € Z\{0}, c is a constant, belongs to Lyp.

3 ZERO AND POLE DISTRIBUTION
Let {a;}, {b;}, j € Z be a couple of sequences in C*, p # 1. Put

u(r) = [logr/loglq|] — 1.

Note that () = 0if |g| < r < 1. Denote

MO
a]\
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Theorem 3. The zero sequence {a;} and the pole sequence {b;} of a non-identical zero mero-
morphic p-loxodromic function of multiplicator q satisty the following conditions:

(i) the number ofa; and b; in every annulus of the form {z : r < |z| < 2r}, r > 0 is bounded
by an absolute constant;

(i) the difference between the numbers of a; and by in every annulus {z : 11 < |z| < r2},
0 < r < rp < 400 is bounded by an absolute constant;

(iii) there exists C; > 0 such that ‘% — 1’ > Cy for every j,k € Z;

(iv) the function 9, (r), where v € Z such that A = qﬂv, and A is given by (6), is bounded for
r> 0.

Proof. Let f be a p-loxodromic of multiplicator g function. If f is holomorphic then by Corol-
lary 1 there exists k € Z\{0} such that f(z) = cz¥, and c is a constant. Hence, f has no zeros
in C*. So there is nothing to prove.

Let f be meromorphic. Then by Remark 2 and Theorem 1 it has infinitely many zeros and
poles.

- . . 1 1 )
(i) First we remark that there exists a unique ny € Z; such that —— < 2 < ————. This

|q|"0 — |q[nmo+1”
log2]
log%q|

' r r .
Since every annulus {z : — < [z] < HTH}, where k € Z, contains the same number of
q

|q|k
U <Ln,2r]
|q|"o

it follows that the annulus {z : r < |z| < 2r} contains at least nym and less than (ny + 1)m
zeros of f. The same is true about the poles of f.

np is equal to [

zeros of f, say m, and

m=1 r
(r,2r] = <—, —
U |g[F" |q|k 1

k=0

(ii) Similarly as in (i) we can find unique 1,1, € Z such that
gt < < ql" < g™ <2 < gl

Hence
ny— 1

(ri,r2) = (ro, lglmTU | U (gl 1gl*1 | U (gl r2).

k:n1

Every annulus of the form {z : |g/**! < |z| < |g|F}, where k € Z, contains equal amount of
zeros and poles of f counted according to their multiplicities (we have denoted this number
by m). Therefore the difference between the numbers of zeros and poles of f in the annulus
{z : r1 < |z| < rp} is no greater than 2m because of the choice of 1y, n;.

(iii) Let ay, a, ..., anm and by, by, ..., by, be the zeros and the poles of fin {z : |g| < |z| < 1}
respectively. Then all the zeros of f have the form ay k= arg, where y € Z, k = 1,2,...,m.
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The same is true about the poles of f, namely B,y = bg", wherev € Z, k = 1,2,...,m. So,

% = Z—iql, where [ € Z.
v,

It is necessary to show that there exists C > 0 such that the inequality

4
bkq 1'>C

holds forall j,k € {1,2,..,m},and ] € Z.
Suppose that for any € > 0 there exist j,k € {1,2,...,m}, and | € Z such that

g —1] <
q <e. (10)
bx

Without loss of generality we can assume that |/| < 2. Indeed, taking into account where
aj, by belong to, we have

a4
bl

1
WW <lql, 1>2

Similarly,
1
> lqllq|" > =2

]l
bk

So, forall j,k € {1,2,..,m},and | > 2

a.
b—]ql—l‘ >1-1q,
k

and forl < -2

a1 ' 1
| S
by 4
Let now |I| < 2. Choose
£ = %min{]a]-ql —bl:j,ke{1,2,.,m}—-1<I<1}.

Then (10) implies
\aqu - bk’ < S‘bk‘ <e.

That is 1
|aqu — bl < Emin{|aqu — bl :j,ke{1,2,..,m},-1<I1<1}

which gives a contradiction.

(iv) We remind that f has representation (7). It can be rewritten as follows

021
o ar ) = z N
f(z):chH;iog nk +oi TR zeC. (11)
k=i <_E>H<1_u>
n=0 be ) n=1 z

Clearly, we can assume ¢ # 0. Consider the integral means I(r) = ZL

log |f(re'®)| a6,

O%N

r > 0.
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Let z = re'?. We have for r > 1[4, p- 8]

/ log |1

1 27
E/log 1-—=
0
The same is true for b;.
Since for every k € {1,2,..,m} we have |[c,g™"| > 1forn € N, and |cxq"| < 1forn €
IN U {0}, where ¢ is a zero or pole of f, then (11) implies

I(r) =vlogr+ Y log" — — Y} log™® b +logle|, r>1.
la;|>1 |]| [b;]>1 | |

do = log™

Jaj] ]\
and, if |a;] <1

Similarly, for 0 < r < 1 we obtain
I(r) =vlogr+ ) log" ‘]‘ Y log* ‘]’+log||
laj]<1 b <1

Hence,
1

[pl®)
Since I(r) is convex with respect to logr and consequently continuous, I(r) is bounded on
[l9],1]. It follows from the definition of a p-loxodromic function of multiplicator g that

I(|qlr) = I(r) + klog |p|
for every k € Z. On the other hand

ulan) = |

W (1) = e exp (1) = rexp{1(r) —u(r)loglpl}, 7 >0.

klog |g| + logr
log g]

]—1:k, g <r <1

That is
M, (|g[fr) =M, (r), gl <r<1

for all k € Z. Then we conclude that 9, (r) remains bounded for all ¥ > 0 which completes
the proof.
U

4 JULIA EXCEPTIONALITY

Definition 3. Let f,,n € IN, be meromorphic functions in a domain G. A sequence { f,(z)} is
said to be uniformly convergent to f(z) on G in the Carathéodory-Landau sense [1] if for any point
zo € G there exists a disk K(zg) centered at this point such that K(zp) C G and

(Ve > 0)(3ng € N)(Vn > no)(Vz € K(z0)) : |fu(z) — f(2)| <&,

whenever f(zy) # oo, or

whenever f(zp) = oo.
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Note that this convergence is equivalent to the convergence in the spherical metric.

Definition 4. A family F of meromorphic in C* functions is said to be normal if every sequence
{fu} C F contains a subsequence which converges uniformly in the Carathéodory-Landau
sense.

Definition 5. A meromorphic in C* function f is called Julia exceptional (see [7]) if for some g,
0 < |g] <1, the family {f,(z)}, n € Z, where f,,(z) = f(q"z), is normal in C*.

In C there are few simple examples of Julia exceptional functions. But in C* we have the
following.
Let f € L;p. We have

fu(2) = f(q"2) = p"f(2)

for every z € C*.

If |p| > 1, then a limiting function of the family {f,(z)}, n € Z, is co. Otherwise, if |p| < 1,
then a limiting function is 0. If |p| = 1, that is p = ¢'®, we have f,(z) = ¢"*f(z). Hence, the
set of limit functions depends on a. If x = 7, where m € Z, k € IN, the number of limiting
functions is less than or equals to 2k. Otherwise, if &« = 7t7, where r € R\Q, the number of
limiting functions is infinite.

Example 2. Let f € L witha = 7. Then

fu(z) = fq"2) = p"f(2) = "1 f(2).

Thus, we obtain eight limiting functions

2.02) (2225

£ £, <7il7 2 Ey

Hence, f is Julia exceptional in C*.
These results can be summarized as follows.

Theorem 4. Each function f € Lg, is Julia exceptional in C*.
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AOCAIAXKYETBCS KAAC P-AOKCOAPOMHMX (PYHKIIiM (MepoMOpdpHIX (pYHKIIIN, IITO 33 AOBOABHSIIOTh
ymoBy f(qz) = pf(z) npu aesikux g € C\{0} arst Bcix z € C\ {0}). AoBeaeHO, 110 KOXHa p-
AokcoppomHa pyHKIisI € JKroaia BuHSITKOBOW. TToaaHO 306paXkeHHST TakuxX pYHKIIiN Ta OIMCaHO
PO3MOAiA iX HYAiB Ta IIOAIOCIB.

Kntouosi cnosa i ppasu: p-arokcoppomHa dyHKIis, nepsyrHa pyHkis HlorTki-Kasiaa, Xroaia
BUHSITKOBiCTb.



