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A CLASS OF JULIA EXCEPTIONAL FUNCTIONS

The class of p-loxodromic functions (meromorphic functions, satisfying the condition

f (qz) = p f (z) for some q ∈ C\{0} and all z ∈ C\{0}) is studied. Each p-loxodromic function

is Julia exceptional. The representation of these functions as well as their zero and pole distribution

are investigated.
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INTRODUCTION

Denote C∗ = C\{0}, and let q, p ∈ C∗, |q| < 1.

Definition 1. A meromorphic in C∗ function f is said to be p-loxodromic of multiplicator q if for

every z ∈ C∗

f (qz) = p f (z). (1)

Let Lqp denotes the class of p-loxodromic functions of multiplicator q.

The case p = 1 has been studied earlier in the works of O. Rausenberger [9], G. Valiron

[11] and Y. Hellegouarch [5]. In his work [3, p. 133] which A. Ostrowski [8] called "besonders

schöne und überraschende" G. Julia gave an example of a meromorphic in the punctured plane

C∗ function satisfying (1) with p = 1 for some non-zero q, |q| 6= 1, and all z ∈ C∗. He noted

that the family { fn(z)}, fn(z) = f (qnz) is normal [7] in C∗ because fn(z) = f (z) for all z ∈ C∗.

If p = 1 the function f is called loxodromic. Loxodromic functions of multiplicator q form

a field, which is denoted by Lq. The set Lqp forms an Abelian group with respect to addition.

It is obvious that a ratio of two functions from Lqp is a loxodromic function, and the deriva-

tive of the loxodromic function is p-loxodromic with p = 1
q .

Remark 1. Every f ≡ const belongs to Lq, but the unique constant function belonging to Lqp

is f ≡ 0.

If f ∈ Lqp and a is a zero of f , then aqn, n ∈ Z, are as well. That is, in the case of non-

positive q the zeros of f lay on a logarithmic spiral. Let a = |a|eiα, q = |q|eiγ. Then the loga-

rithmic spiral in polar coordinates (r, ϕ) takes the form

log r − log |a| = k(ϕ − α),
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where k =
log |q|

γ . The same concerns the poles of f . The image of a logarithmic spiral on the

Riemann sphere by the stereographic projection intersects each meridian at the same angle

and is called loxodromic curve (λoξoζ - oblique, δρoµoζ - way). That is why we call (following

G. Valiron) the function from Lq loxodromic.

Remark 2. If f ∈ Lq and z is its a-point, a ∈ C ∪ {∞}, then qnz, n ∈ Z, are its a-points too. In

the case, f ∈ Lqp, the previous considerations are valid only for the zeros and the poles of f .

It is easy to verify, that Lqp forms the linear spaces over the fields C and Lq. Also it is clear

that Lqp has the following properties.

Proposition. The linear space Lqp has the following properties.

1. The map D : f (z) 7→ z f ′(z) maps Lqp to Lqp.

2. The map Dl : f (z) 7→ z
f ′(z)
f (z)

maps Lqp to Lq.

3. f (z) ∈ Lqp ⇒ f (1
z ) ∈ Lq 1

p
.

Let us give nontrivial example of p-loxodromic function of multiplicator q. Put

h(z) =
∞

∏
n=1

(1 − qnz), 0 < |q| < 1.

Definition 2. The function

P(z) = (1 − z)h(z)h

(

1

z

)

= (1 − z)
∞

∏
n=1

(1 − qnz)(1 − qn

z
)

is called the Schottky-Klein prime function.

This function is holomorphic in C∗ with zero sequence {qn}, n ∈ Z. It was introduced by

Schottky [10] and Klein [6] for the study of conformal mappings of doubly-connected domains,

see also [2].

It is easy to obtain the following property of P

P(qz) = −1

z
P(z). (2)

Example 1. Consider the function

f (z) =
P
(

z
p

)

P(z)
.

Using (2), it is easy to show that f ∈ Lqp.

1 THE NUMBERS OF ZEROS AND POLES OF p-LOXODROMIC FUNCTIONS IN AN ANNULUS

Let Aq(R) = {z ∈ C : |q|R < |z| ≤ R}, R > 0 and Aq = Aq(1).

Theorem 1. Let f ∈ Lqp and the boundary of Aq(R) contains neither zeros nor poles of f .

Then f has equal numbers of zeros and poles (counted according to their multiplicities) in

every Aq(R).
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Proof. Let Γ1 = {z ∈ C : |z| = |q|R} and Γ2 = {z ∈ C : |z| = R} denote the circles bounding

Aq(R). Let n( f ) be the number of poles of f in Aq(R).

By the argument principle, we have

n

(

1

f

)

− n( f ) =
1

2iπ







∫

Γ+
2

f ′(z)
f (z)

dz −
∫

Γ+
1

f ′(ξ)
f (ξ)

dξ






. (3)

Setting ξ = qz in the second integral of (3), we obtain

n

(

1

f

)

− n( f ) =
1

2iπ

∫

Γ+
2

(

f ′(z)
f (z)

− q
f ′(qz)

f (qz)

)

dz. (4)

Since f ∈ Lqp, the relation (1) implies

f ′(qz) =
p

q
f ′(z). (5)

Putting (1) and (5) in (4), we obtain the conclusion of the theorem.

Remark 3. Every non-constant loxodromic function of multiplicator q has at least two poles

(and two zeros) in every annulus Aq(R) [5]. As we see from Example 1, the p-loxodromic

function f has the unique pole z = 1 in Aq. This is an essential difference between loxodromic

and p-loxodromic functions with p 6= 1.

2 REPRESENTATION OF p-LOXODROMIC FUNCTIONS

The representation of loxodromic functions from Lq was given in [11], [5]. The following

theorem gives the representation of a function from Lqp.

Let a1, ..., am and b1, ..., bm be the zeros and the poles of f ∈ Lqp in Aq respectively. Denote

λ =
a1 · ... · am

b1 · ... · bm
. (6)

Theorem 2. The non-identical zero meromorphic in C∗ function f belongs to Lqp, p 6= 1, if

and only if there exists ν ∈ Z such that λ = p
qν and f has the form

f (z) = czν
P
(

z
a1

)

· ... · P
(

z
am

)

P
(

z
b1

)

· ... · P
(

z
bm

) , (7)

where c is a constant.

Proof. Firstly, denote

M(z) =
P
(

z
a1

)

· ... · P
(

z
am

)

P
(

z
b1

)

· ... · P
(

z
bm

)

and consider the function

g(z) =
f (z)

M(z)
.
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Since the functions f and M have the same zeros and poles, it follows that their ratio g is

holomorphic in C∗ function. Let g(z) =
+∞

∑
n=−∞

cnzn be the Laurant expansion of g in C∗. Using

relation (1) and the equality (2), we obtain

λg(qz) = pg(z). (8)

According to (8), we obtain

λ
+∞

∑
n=−∞

cnqnzn = p
+∞

∑
n=−∞

cnzn

for any z ∈ C∗. This implies λcnqn = pcn or cn(λqn − p) = 0. Then there exists at least one

cν 6= 0, ν ∈ Z, such that

cν(λqν − p) = 0. (9)

Hence, the relation (9) implies qν =
p

λ
. We see also that cn = 0 if n 6= ν, so we have

g(z) = cνzν. Thus, we can conclude

f (z) = g(z)M(z) = czν M(z),

where c is a constant.

Secondly, we have f (z) = czνM(z), ν ∈ Z. Show that it belongs to Lqp. Thus, f (qz) =

cqνzν M(qz). Indeed, using (2), we obtain

f (qz) = cqνzνλM(z) = p f (z).

This completes the proof.

Corollary 1. Assume f ∈ Lqp, if f is holomorphic in C∗, then f (z) ≡ 0 or there exists k ∈
Z\{0} such that p = qk and f (z) = czk, where c is a constant. Conversely, a holomorphic in

C∗ function of the form f (z) = czk, where k ∈ Z\{0}, c is a constant, belongs to Lqp.

3 ZERO AND POLE DISTRIBUTION

Let {aj}, {bj}, j ∈ Z be a couple of sequences in C∗, p 6= 1. Put

µ(r) = [log r/ log |q|]− 1.

Note that µ(r) = 0 if |q| ≤ r < 1. Denote

Mν(r) =
1

|p|µ(r)
×



















































rν

∏
1<|aj|≤r

r
|aj|

∏
1<|bj|≤r

r
|bj|

, r > 1;

rν

∏
r<|aj|≤1

|aj|
r

∏
r<|bj|≤1

|bj|
r

, 0 < r ≤ 1.
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Theorem 3. The zero sequence {aj} and the pole sequence {bj} of a non-identical zero mero-

morphic p-loxodromic function of multiplicator q satisfy the following conditions:

(i) the number of aj and bj in every annulus of the form {z : r < |z| < 2r}, r > 0 is bounded

by an absolute constant;

(ii) the difference between the numbers of aj and bk in every annulus {z : r1 < |z| < r2},

0 < r1 < r2 < +∞ is bounded by an absolute constant;

(iii) there exists C1 > 0 such that
∣

∣

∣

aj

bk
− 1
∣

∣

∣
> C1 for every j, k ∈ Z ;

(iv) the function Mν(r), where ν ∈ Z such that λ = p
qν , and λ is given by (6), is bounded for

r > 0.

Proof. Let f be a p-loxodromic of multiplicator q function. If f is holomorphic then by Corol-

lary 1 there exists k ∈ Z\{0} such that f (z) = czk, and c is a constant. Hence, f has no zeros

in C∗. So there is nothing to prove.

Let f be meromorphic. Then by Remark 2 and Theorem 1 it has infinitely many zeros and

poles.

(i) First we remark that there exists a unique n0 ∈ Z+ such that
1

|q|n0
≤ 2 <

1

|q|n0+1
. This

n0 is equal to

[

log 2

log 1
|q|

]

.

Since every annulus {z :
r

|q|k < |z| ≤ r

|q|k+1
}, where k ∈ Z, contains the same number of

zeros of f , say m, and

(r, 2r] =

(

n0−1
⋃

k=0

(

r

|q|k ,
r

|q|k+1

]

)

∪
(

r

|q|n0
, 2r

]

it follows that the annulus {z : r < |z| ≤ 2r} contains at least n0m and less than (n0 + 1)m

zeros of f . The same is true about the poles of f .

(ii) Similarly as in (i) we can find unique n1, n2 ∈ Z such that

|q|n1+1
< r1 ≤ |q|n1 < |q|n2 < r2 ≤ |q|n2−1.

Hence

(r1, r2) = (r1, |q|n1 ] ∪





n2−1
⋃

k=n1

(|q|k , |q|k+1]



 ∪ (|q|n2 , r2).

Every annulus of the form {z : |q|k+1
< |z| ≤ |q|k}, where k ∈ Z, contains equal amount of

zeros and poles of f counted according to their multiplicities (we have denoted this number

by m). Therefore the difference between the numbers of zeros and poles of f in the annulus

{z : r1 < |z| < r2} is no greater than 2m because of the choice of n1, n2.

(iii) Let a1, a2, ..., am and b1, b2, ..., bm be the zeros and the poles of f in {z : |q| < |z| ≤ 1}
respectively. Then all the zeros of f have the form αµ,k = akqµ, where µ ∈ Z, k = 1, 2, ..., m.
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The same is true about the poles of f , namely βν,k = bkqν, where ν ∈ Z, k = 1, 2, ..., m. So,
αµ,j

βν,k
=

aj

bk
ql , where l ∈ Z.

It is necessary to show that there exists C > 0 such that the inequality
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

> C

holds for all j, k ∈ {1, 2, ..., m}, and l ∈ Z.

Suppose that for any ε > 0 there exist j, k ∈ {1, 2, ..., m}, and l ∈ Z such that
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

≤ ε. (10)

Without loss of generality we can assume that |l| ≤ 2. Indeed, taking into account where

aj, bk belong to, we have
∣

∣

∣

∣

aj

bk
ql

∣

∣

∣

∣

≤ 1

|q| |q|
l ≤ |q|, l ≥ 2.

Similarly,
∣

∣

∣

∣

aj

bk
ql

∣

∣

∣

∣

≥ |q||q|l ≥ 1

|q| , l ≤ −2.

So, for all j, k ∈ {1, 2, ..., m}, and l ≥ 2
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

≥ 1 − |q|,

and for l ≤ −2
∣

∣

∣

∣

aj

bk
ql − 1

∣

∣

∣

∣

≥ 1

|q| − 1.

Let now |l| < 2. Choose

ε =
1

2
min{|ajq

l − bk| : j, k ∈ {1, 2, ..., m},−1 ≤ l ≤ 1}.

Then (10) implies

|ajq
l − bk| ≤ ε|bk| ≤ ε .

That is

|ajq
l − bk| ≤

1

2
min{|ajq

l − bk| : j, k ∈ {1, 2, ..., m},−1 ≤ l ≤ 1}

which gives a contradiction.

(iv) We remind that f has representation (7). It can be rewritten as follows

f (z) = czν
m

∏
k=1

+∞

∏
n=0

(

1 − qnz

ak

)

+∞

∏
n=1

(

1 − qnak

z

)

+∞

∏
n=0

(

1 − qnz

bk

)

+∞

∏
n=1

(

1 − qnbk

z

) , z ∈ C∗. (11)

Clearly, we can assume c 6= 0. Consider the integral means I(r) = 1
2π

2π
∫

0

log | f (reiθ)| dθ ,

r > 0.
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Let z = reiθ . We have for r > 1 [4, p. 8]

1

2π

2π
∫

0

log

∣

∣

∣

∣

∣

1 − z

aj

∣

∣

∣

∣

∣

dθ = log+ r

|aj |
,

and, if |aj | ≤ 1

1

2π

2π
∫

0

log

∣

∣

∣

∣

1 −
aj

z

∣

∣

∣

∣

dθ = 0 .

The same is true for bj.

Since for every k ∈ {1, 2, ..., m} we have |ckq−n| > 1 for n ∈ N, and |ckqn| ≤ 1 for n ∈
N ∪ {0}, where ck is a zero or pole of f , then (11) implies

I(r) = ν log r + ∑
|aj|>1

log+ r

|aj |
− ∑

|bj|>1

log+ r

|bj|
+ log |c| , r > 1 .

Similarly, for 0 < r ≤ 1 we obtain

I(r) = ν log r + ∑
|aj|≤1

log+ |aj |
r

− ∑
|bj|≤1

log+ |bj|
r

+ log |c| .

Hence,

Mν(r) =
1

|p|µ(r)
1

|c| exp I(r) =
1

|c| exp{I(r)− µ(r) log |p|}, r > 0 .

Since I(r) is convex with respect to log r and consequently continuous, I(r) is bounded on

[|q|, 1]. It follows from the definition of a p-loxodromic function of multiplicator q that

I(|q|kr) = I(r) + k log |p|
for every k ∈ Z. On the other hand

µ(|q|kr) =

[

k log |q|+ log r

log |q|

]

− 1 = k, |q| ≤ r < 1.

That is

Mν(|q|kr) = Mν(r), |q| ≤ r < 1

for all k ∈ Z. Then we conclude that Mν(r) remains bounded for all r > 0 which completes

the proof.

4 JULIA EXCEPTIONALITY

Definition 3. Let fn, n ∈ N, be meromorphic functions in a domain G. A sequence { fn(z)} is

said to be uniformly convergent to f (z) on G in the Carathéodory-Landau sense [1] if for any point

z0 ∈ G there exists a disk K(z0) centered at this point such that K(z0) ⊂ G and

(∀ε > 0)(∃n0 ∈ N)(∀n > n0)(∀z ∈ K(z0)) : | fn(z)− f (z)| < ε,

whenever f (z0) 6= ∞, or
∣

∣

∣

∣

1

fn(z)
− 1

f (z)

∣

∣

∣

∣

< ε,

whenever f (z0) = ∞.
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Note that this convergence is equivalent to the convergence in the spherical metric.

Definition 4. A family F of meromorphic in C∗ functions is said to be normal if every sequence

{ fn} ⊆ F contains a subsequence which converges uniformly in the Carathéodory-Landau

sense.

Definition 5. A meromorphic in C∗ function f is called Julia exceptional (see [7]) if for some q,

0 < |q| < 1, the family { fn(z)}, n ∈ Z, where fn(z) = f (qnz), is normal in C∗.

In C there are few simple examples of Julia exceptional functions. But in C∗ we have the

following.

Let f ∈ Lqp. We have

fn(z) = f (qnz) = pn f (z)

for every z ∈ C∗.

If |p| > 1, then a limiting function of the family { fn(z)}, n ∈ Z, is ∞. Otherwise, if |p| < 1,

then a limiting function is 0. If |p| = 1, that is p = eiα, we have fn(z) = einα f (z). Hence, the

set of limit functions depends on α. If α = πm
k , where m ∈ Z, k ∈ N, the number of limiting

functions is less than or equals to 2k. Otherwise, if α = πr, where r ∈ R\Q, the number of

limiting functions is infinite.

Example 2. Let f ∈ Lα
q with α = π

4 . Then

fn(z) = f (qnz) = pn f (z) = ein π
4 f (z).

Thus, we obtain eight limiting functions

± f , ±i f ,

(√
2

2
± i

√
2

2

)

f ,

(

−
√

2

2
± i

√
2

2

)

f .

Hence, f is Julia exceptional in C∗.

These results can be summarized as follows.

Theorem 4. Each function f ∈ Lqp is Julia exceptional in C∗.
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Хорощак В.С., Христiянин А.Я., Лукiвська Д.В. Один клас Жюлiа виняткових функцiй // Кар-

патськi матем. публ. — 2016. — Т.8, №1. — C. 172–180.

Дослiджується клас p-локсодромних функцiй (мероморфних функцiй, що задовольняють

умову f (qz) = p f (z) при деяких q ∈ C\{0} для всiх z ∈ C \ {0}). Доведено, що кожна p-

локсодромна функцiя є Жюлiа винятковою. Подано зображення таких функцiй та описано

розподiл їх нулiв та полюсiв.

Ключовi слова i фрази: p-локсодромна функцiя, первинна функцiя Шотткi-Кляйна, Жюлiа

винятковiсть.


