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COUNTABLE HYPERBOLIC SYSTEMS IN THE THEORY OF NONLINEAR
OSCILLATIONS

In this article a model example of a mixed problem for a fourth-order differential equation is
reduced to initial-boundary value problem for countable hyperbolic system of first order coherent
differential equations.
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INTRODUCTION

Many problems from Elasticity Theory, Gas dynamics, Theory of plates and shells reduced
to partial higher order differential equations [1, 2, 3] using Fourier method [3] or the method
of Principal coordinates [1]. As a result we get a infinite system of ordinary differential equa-
tions. The Theory of countable ordinary differential systems is described in the monograph
[4]. However, in many cases, particularly in the famous Hadamard’s example [5, p.112] about
correct solvability of initial problem for Cauchy-Riemann equation, if interpret partial solu-
tions like u, = I,(t) cosnx, v, = Ju(t)sinnx, we get a countable system of partial first order
differential equations. Similar systems occur in determining of the generalized solution for
hyperbolic first order equations [5, p.132], in the investigation of mathematical models of self-
excited oscillator with distributed parameters [6], in many periodic solutions of quasi-linear
hyperbolic systems [7] and others. Some questions about the correct solvability of initial-
boundary value problems for countable hyperbolic systems of first order differential equations
are considered in [8, 9, 10, 13].

1 STATEMENT OF PROBLEM

In the domain Q = {(t,x,y) : t € (0,T),x € (0,11),y € (0,1)} we consider fourth order
partial differential equation

upt + B(t, x) (thtx 4 tayy) + C(, %)t + Uyyyy + 2Upyy = f<t, X, Y, U, Ut, Uy, uyy> (1)
with initial

uli=0 = ¢(x,y),

2
ut‘fzozlp(xry)/ O§x§lll OS]/SZZI ( )
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and boundary conditions
u|y:0 = u|y I, = 0,
az_u‘ _ Y
A2 ly=0 a2 ly=,
u|x:0 — ,M(t;]/)/ u|x:ll - V(t/y)/ O S y S 12/ O S t S T/

=0, 0<x<[;,0<t<T, (3)

where

1O0,y) = (0,y), v(0,y) =e(l,y), w0, y) =9(0,y), vi(0,y) =v(l,y),
¢(x,0) = ¢(x,1) =0, ¥(x,0) =¢(x,r) =
q)/y/y(xl O) = q)/yy(x 12) =0, lp;/y( ’ ) ngy(x 12) 0.

2 THE REDUCTION EQUATION (1) TO A COUNTABLE SYSTEM OF SECOND ORDER
DIFFERENTIAL EQUATIONS

We will search solution of the problem (1)—(3) using separation of variables method, namely
in the form of a series

u(t,x,y) = vo(t, x) + Z (v (t, x) cos any + wy(t, x) sinayy), (4)
n=1
where «;,, = Z% (see [12, 13]). Substituting (4) in boundary conditions (3), we obtain

Y ou(t,x) = 0 and ¥ a2v,(t,x) = 0. Suppose, that v,(t,x) = 0 for all n € N and
n=0 n=1
(t,x) € II"* = (0, T) x (0, 1h).

Assume that the initial data of the problem (1)—(3) are sufficiently smooth. Let compatibil-
ity conditions are fulfilled and the initial data are unambiguous decomposed in a series

ou Ju 0%u > ow; 0ws; ow; 0ws; .
f(t,x,y,u,g,a,a—yﬁ —Eﬁ,(t,x,wl,wz,..., 5 3 9r Bx ,...)smany, (5)

y) =Y, en(x)sinany, (x,y) =} Pu(x)sinany, (6)
n=1 n=1
y) = Z pn(t) sinany, v(t,y) = Z V() sin ayy. (7)

Let w, = (272”) Substitute equality (4) in equation (1) and conditions (2) and (3). After
multiplying received equalities by sina,,y, (m = 1,2,...) and integrating in the interval from
0 to I, with considering conditions (5)-(7), we obtain the countable system of second-order
differential equations

2w, 2w, Jdw, 2w, 5 Jw,
o2 +B(t'x)<8t8x_w ax )*C( )Gz T Wntn = 2wn =5

(8)

dw; Jdws; dw; 0w
ot "ot ox ox’

:fn<t,x,w1,w2,..., ..), n €N,

with initial and boundary conditions

Jw
Wnli=0 = @n(x), at" o Pa(x), 0<x<K,

wn|x:0 = P‘n(t)/ wn|x:ll = Vn(t)z 0<t<T.
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Propose a change of variables w, = v, e“nt. Then all derivatives will be rewritten in a form

awn o avn (,Unt awn _ avn wnt
o= (G +nmn)ets = gpe,

*w, 9%v, 8 o
5z = (e + 2, o e,

Pwn _ <azvn +wnavn)ewnt’ Pw,  9? P .t

dtdx dtox ox 0x2  0x2

As a result, we obtain the countable system of second order differential equations
9%v, 9%v, d%v,
B(t, x
3+ Bl X5+ Ol 5
dv1 00Uy 0v, 09Uy
- t/ ’ ’ /---/—/—/---/—/—/---)/ N/
fultvonon SEGE TS, e
where
fo=e 9ty (t x, 01t vyt L,
ov ov v ov
atl et 1w, v1evnt 8t2 et 1 wpvpent, ..., a—xle“’"t, a—xze“’”t, o ) :
Initial and boundary conditions will be rewritten in a form
duy, -
0= 1 = <x<
nli—0 = gu(x), =5 =Palx),  0<x<h,

Un|x 0= fin t)/ Un|x:ll = ﬁn(t)z 0<t<T,
where i, (t) = pn(t)e™ ", U, () = va(t)e™ ", Pu(x) = Pu(x) — wWnpu(x).

3 THE REDUCTION TO COUNTABLE SYSTEM OF FIRST ORDER DIFFERENTIAL EQUATIONS

Suppose that A(t, x) = B?(t,x) — 4C(t,x) > 0, for all (¢, x) € II**, so each equation of the
system (8) has hyperbolic type. We denote
_1)?
Al x) = B(t, x) + ( 21) A(t,x)’
v, dvuy,

Uin = w—{—)tlg, Z:1,2

Then
aﬁ _ 02n — Uln
ox N/
avn UZ n - Ul n
= — (B N)——.
ot U2.n ( + \/_) 2\/Z

Due to variables changes, each equation of the system (8) would be equivalent to the system
of equations [5, 11]

9v; , avm_ 1 /0A; oA
ot Mgy T \/_<at FAsigs )(sz"_vlf”)
z U21 — 011 U21 — 011
+ t,x,01,...,021 — B+ VA)-% ., = ..., 9
fn< 1 2,1 ( ) 2\/5 \/Z ) ()
o0vy 02,1 — O1,n .
=0y, — (B+VA) 2L =12, neNN.
o =T BEVAIT R
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Suppose, that A1(t,x) > 0, Ax(t,x) <0 (a sufficient condition is execution the inequality
|B(t,x)| < \/A(t, x)). Conduct characteristic L1 (0,0) through the point (0,0) and characteris-
tic L(0, I7) through the point (0, I1), which are the solutions of Cauchy problems

dx dx
i A (t,x), x(0) =0, i Aa(t,x), x(0) = I;.

Thus, rectangle IT"* is divided into three parts (see Figure 1).

'

My Mo M2

=Y

Figure 1: Partition of domain by characteristics with slope A; > 0, A, < 0.

In subdomain Il for system (9) define the initial conditions

. d :
Unli=0 = @n(%), Vinli=0 = Pu(x) + Ajlt=0o——(x), i=12.

n

dx

In I'T; for v, and vy, define the initial conditions, and for v ,, define the boundary condi-
tions on the left side

- d
Ouli=o = @u(x),  vaulizo = Pu(x) + Aalizo (),

2v/A dii, 2v/A
_g = t 1-— =0-
OLnle=0 B+ v/Alx=0 dt (£)+ ( B+ \/Z) )xzovz,n\x_o

In subdomain I, for v, and vy ,, define the initial conditions, and for v; ,, define the bound-
ary conditions on the right side

s do,
Unli=0 = @n(X), V1inlt=0 = Pu(x) + A1|t=0—— (%),

dx
vl = 2vVA dﬁn(t)+B+\/Z
2= TN B ey dt B— VA

Remark 3.1. If the following condition is not fulfilled Ay > 0,A, < 0, there is possible to get
such cases:

DA > Ay >0,A24+ A3 £0;

i) A1 <Ay <0,A7+ A% #0.

In the first case, for system (1) it is necessary to define the boundary conditions in the next
form

01,n|x=I4-
x:ll |x 1

Uly—o = u(t,y), uxlx—o =v(t,y), 0<y<lh, 0<t<T.
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Figure 2: Partition of domain by characteris- Figure 3: Partition of domain by characteris-
tics with slope A1, A2 > 0. tics with slope A1, A, < 0.

Conduct characteristics L1(0,0) and L,(0,0) through the point (0,0), which are the solu-

tions of Cauchy problems

dx .
i A, x(0)=0, i=1,2.

Thus, rectangle I1"* is devided into three parts (see Figure 2).
In subdomain I'ly define the initial conditions

. d )
=0 = Pn(x) + Aili=0 dxn (x), i=1,2.

Un|t:() = q)n(x)/ Oin

In I, for v, and vy, define the initial conditions, and for v, ,, detine the boundary condi-
tions on the left side

- d
=0 = Pn(x) + Aoli—o (),

Un’t:() = (Pn(x)r 02,1
_ i
=0 gy

(t) + )‘1 |x:017n (t)

01,n

In subdomain I1; for v, detine the initial conditions, and for vy ,, and v; ,, define the bound-
ary conditions on the left side

d
Un|t:0 = Qon(x)z Uz‘,n|x:0 = Z;tn (t) + Ai|x:01/n(t)'

Similarly, the initial and boundary conditions would be defined in case, when A1 < A, <0,
A% + A% > 0 (see Figure 3). In this case for the system (1) we have to set the boundary conditions
in the following form

Ulymy, = (b y), txly=y, =v(ty), 0<y<b, 0<t<T.

4 EXAMPLE

For example, consider a differential equation

7T

G + ty — y2>u + f(t,x,y), (10)

2
Ut — X Uxy + uyyyy + Zutyy = — XUy + (
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where f(t, x,y) — some polynomial of (¢, x,y), with initial conditions

5 5 1
Ulj—o = 0, ut|s=0 = <y5 = Eny4 + gnzy?’ = 67'(4y)(7rx —x%), 0<x<m0<y<m,

and homogeneous boundary conditions
azu’ _ azu’
a2 ly=0 Ay ly=r

Uly—0 = ttly=n = 0, tt|x=0 = U|z= =0, 0<x<7m 0<y<m 0<t<T.

=0,
(11)

The solution can be sought in the form u(t,x,y) = Y wy,(t, x)sin2ny. Functions on the

n
right side of the equation and the initial conditions decomposed in such series

5 5 1 = 15
5_ 2 4,2 23 1 4 _ ;
Y =5y —|—37‘cy 7Y ) 55 sin 2ny,

n=1

flt,x,y) = Z fu(t, x)sin2ny,
n=1
2 00
= e v 1
Sty -y = mZ::l — cos 2my,
2

<— %—{—ﬂy—yz)u =Y Y ) %5,’§’msin2ny,

1 .
k,m: 2 lfk—{—m—i’l:O/
where J;, { _%, if (k—m+n)(m—k+n)=0.

So, we obtain the countable system of second order differential equations

Pw,  ,0%wy own _ 3wn v Wk ok
s~ s Wiy — 2wy = — ;X::—zé"“rfn, neN, (12)

with initial conditions

15
=0 21

ow,
ot
and homogeneous boundary conditions.
Perform a change of variables w, = v,e“’. The system (12) will be rewritten in a form

(ﬂx—xz) 0<x<mneN,

Wy |t:0 - O/

?v, 502 Un avn 2 e vke —Wn km fn
AL SPIPIEEE gl o vl wen,
m

with initial and homogeneous boundary conditions

0v 15
Onlt=0 = 0, a—:tzoz—ﬁ(nx—xz), 0<x<mmneN.
In this case A = 4x2, that is
dvuy, xavn
Lo ox '
duy, 00y,
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As a result, we obtain the countable system of first order differential equations

(avl,n a"'Jln . oi °Z°: vke(“’k wn)t 5km fn
ot " ox =1 m=1 (m ewnt’
007 ,, 007 ,, ®© X yre Wk—wn)t km fn 13
, o Gk sk ) (13)
ot T ox ;El mZ::1 m2 ewnt
90y V1n+ Vo
ot 2
Since Ay = x > 0,A; = —x < 0, initial and boundary conditions will be rewritten in a
form:
15 15
ﬁ(ﬂx x°), —ﬁ(ﬂx — xz), (t,x) € Iy; (14)
15 2
Un’t: t=0 = —ﬁ(nx - X ), x=0 = —U2n (trx) eIly; (15)
y ——E(n —x?) = (t,x) €11 (16)
On|t= 27’15 X X)), - ;X 2-

After solving the problem (13)—(16) (see [9]), we will obtain a system of functions

15¢
Oy = —W(nx — xz),
15t ) )
Uip = _W((l — wpt)(7mx — x7) 4+ t(mx — 2x7)),
15¢
O2,n = —W((l — wnt)(rcx — xz) — t(rcx — 2x2)).
So w, = 52 (mx — x2).

Therefore u(t, x,y) = 5 (x2 — mx) oZo: sz”y is the exact solution of the problem (10)—(11).

In the Figure 4 we can see 3D-graphics of the solution in the case of t = 0.25 and t = 0.5.

Figure 4: Graphics of solutions at t = 0.25 and ¢t = 0.5.

Together with the problem (13)—(16), we consider truncated system



170

FIRMAN T.I.
avl,n _xavl,n _ g f Uke(wk_w")ték,m_{_ fn
ot 0X  Z1m=—1 m2 " ewnt’
vy 0V N o Uke(wkiwn)t k,m fﬂ 17
7 x 7 — 5 4 , ( )
| ox ,El mZ:;l m2 "
9 Oiut 2
(ot 2 ’

with the initial and the boundary conditions (14)—(16). With some suppositions [10], the solu-
tions of the problems (17), (14)-(16) and (13)—(16) will be as close as possible.

5 shows a graph of

(1]

(2]

(3]

(4]

(5]
(6]

(7]

N
Let v} is the solution of the problem (17), (14)—(16) and uN(t, x,y) = ¥ w} sin2ny. Figure
n=1

max{ [uN (t,x,y)—u(t,xy)|}

max{[u(fx )]
XY

or

0B

Figure 5: Dependence of difference between exact and approximate solution by N.
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VY 1iit poboTi Ha MOAEABHOMY IPMKAaAi MilllaHOI 3aAadi AAST AVidpepeHIIIaABHOTO PiBHSIHHSI Je-
TBEPTOTO IOPSIAKY TIOKa3aHO, SIK TaKy 3aAady MOXKa 3BeCTV AO 3aAadi AAsI 3AiUeHHOI rinepboaiunoi
CMCTeMM 3B’SI3HMX PiBHSIHB IEPIIIOTO IOPSIAKY.

Kntouosi cnosa i ppasu: 3niveHHa rimep6oaivHa crcreMa, MilllaHa 3aaaya.



