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CONTINUOUS BLOCK-SYMMETRIC POLYNOMIALS OF DEGREE AT MOST TWO
ON THE SPACE (L )?

We introduce block-symmetric polynomials on (Le)? and prove that every continuous block-
symmetric polynomial of degree at most two on (Le)? can be uniquely represented by some “ele-
mentary” block-symmetric polynomials.
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INTRODUCTION

Firstly symmetric functions of infinite number of variables were studied by Nemirovski and
Semenov in [5]. Authors considered functions on £, and L, spaces. Some of their results were
generalized by Gonzalez, Gonzalo and Jaramillo [2] to real separable rearrangement-invariant
function spaces. In [3] Kravtsiv and Zagorodnyuk considered block-symmetric polynomials on
¢1-sum of copies of Banach space. In the joint paper of the author with Galindo and Zagorod-
nyuk [1] the algebra of symmetric analytic functions of bounded type on the complex space
L is studied in detail and its spectrum is described.

A map P : X — C, where X is a complex Banach space, is called an n-homogeneous poly-
nomial if there exists an n-linear symmetric form Ap : X" — C, such that P(x) = Ap(x,."., x)
for every x € X. Here “symmetric” means that

Ap(xT(l), .. .,XT(n)) = Ap(xl, .. .,xn)

for every permutation T : {1,...,n} — {1,...,n}. Note that Ap is called the symmetric n-
linear form associated with P. It is known (see e.g. [4], Theorem 1.10) that Ap can be recovered
from P by means of the so-called Polarization Formula:

1

Ap(x1,...,xy) = i Z €1...nP(e1x1 + ...+ €nxy). (1)
n: €1,.-,En==1

In the case n = 2 formula (1) can be written as

Ap(x1,72) = (Pt +32) — Plxi — ) ). e

It is also convenient to define 0-homogeneous polynomials as constant mappings.
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A mapping P : X — C is called a polynomial of degree at most m if it can be represented
as

P=Py+P +...+ Py,

where P; is a j-homogeneous polynomial for j =0, ..., m.
Let Lo be the complex Banach space of all Lebesgue measurable essentially bounded comp-
lex-valued functions x on [0, 1] with norm

Jelles = ess sup, o |x(1)]-

Let E be the set of all measurable bijections of [0,1] that preserve the measure. A function
F : Lo — C is called E-symmetric (or just symmetric when the context is clear) if for every
x € Lo and for every o € &

F(xoo) = F(x).

The functions R, : Lo, — C defined by

Ro(x) = /01 () dt

for every n € IN U {0} are called the elementary symmetric polynomials. In [1] it is shown that for
each continuous E-symmetric polynomial P : Lo, — C of degree at most m there is a unique
finitely many variables polynomial g such that

P(x) =q(Ro(x),...,Ru(x))

for every x € L.

Let (Lo)?> be the Cartesian square of the space L., endowed with norm
|(x,v)] = max{||x]|eo, |[¥]leo}. Clearly, (Ls)? is a complex Banach space. A function
F: (Le)? — C we call block-symmetric if for every (x,y) € (Le)? and for every o € 2

F((xoo,yo0)) = F((x,y))-

We restrict our attention to continuous block-symmetric polynomials of degree at most two on
(Lo )?. In Section 1 we prove that every such a polynomial can be uniquely represented as an
algebraic combination of the polynomials

Ro((x,y)) =1, Ryo((x,y)) = Ri(x), Roi((x,y)) = Ri(y),
1
Ryo((x,y)) = Ra(x), Rul((x,y)) = /o x(t)y(t)dt, Roa((x,y)) = Ra(y),

which we call the elementary block-symmetric polynomials of degree at most two.

1 THE MAIN RESULT

By 1 we denote the characteristic function of a set E C [0,1]. We also define functions
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Theorem 1. Every continuous block-symmetric polynomial P = Py + Py + P, where P; is a
j-homogeneous polynomial for j = 0,1, 2, can be represented as

P = agRoo + a10R10 + a1 Ro1 + @20R20 + a11Ry1 + a02Roz + a1010R3y + 1001 RioRo1 + a0101 RZ;,

where

ap =Py, ap= Pl((llo)), apl = Pl((O, 1)),

ax = P((r,0)), a1 = Ap((r,0),(0,1)), ae = P((0,1)),

a1010 = P2((1,0)) — P2((x,0)), a1001 = Ap,((1,0),(0,1)) — Ap,((r,0), (0, 1)),
agio1 = P2((0,1)) — P»((0,1)).

Here we denote by Ap, the symmetric bilinear form, associated with P;.
Proof. It can be easily checked that

Po((xy) = P(0,0), Pil(x)) = 5 (P((xy) ~ P((~x,~y)),
Pa((x,9)) = P((x,y)) — Prl(x,y)) — Pol(x,9))

for every (x,y) € (Lo)?. This implies that Py, P; and P, are continuous and block-symmetric.
By the linearity of P;

Pi((x,y)) = Pi((x,0) + (0,y)) = P1((x,0)) + P1((0,y))-

Let f1(x) = P;1((x,0)) for x € L. Clearly, f is a continuous linear E-symmetric functional on
L. It is known (see [1, 6]) that every such a functional f can be represented as

f(x) = F(DRy (). (3)

Therefore f1(x) = f1(1)Ry(x), i. e. P1((x,0)) = P1((1,0))Ry(x). Analogously, P;((0,y)) =
P;1((0,1))R1(y). Thus

Pi((x,y)) = P1((1,0))R1(x) + P1((0,1))R1 (v) = a10R10((x,¥)) + ao1Ro1 ((x,¥))-
Since Ap, is bilinear and symmetric, it follows that
Py((x,y)) = Ap,((x,0), (x,0)) +2Ap,((x,0), (0,y)) + Ap,((0,¥), (0,y)).

We define following bilinear forms:

Bi(x1,x2) = Ap,((x1,0), (x2,0)),  Bri(x1,x2) = Ap,((x1,0), (0, x2)),
Brri(x1,x2) = Ap,((0,x1), (0, x2)),

where x1, x3 € Leo. Note that By and Bjjj are symmetric. By the formula (2)

(4)

Apy((x190), (2,32)) = 3 (Pa((31 + 02,51+ 2)) = Pol(1 = 2,31~ 12)))-

Therefore by the symmetry of P,

Ap,((x100,y100),(x200,y200)) = Ap,((x1,y1), (x2,y2)) (5)
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for every o € Z and (x1,y1), (x2,¥2) € (Leo)?. By (5) we have that
Bj(x100,x200) = Bj(x1,x2), (6)

forevery j € {I,II,II1},x1,x) € Lo and 0 € E.

Let Q7 be the restriction of B; to the diagonal. By the continuity of B; and by (6) we have
that Q; is a continuous 2-homogeneous E-symmetric polynomial. It is known (see [1]) that
every continuous 2-homogeneous Z-symmetric polynomial Q on L« can be represented as

Q = aR? 4 BR,. (7)
It can be easily checked that « = Q(1) — Q(r) and B = Q(r). Note that
Qi(x) = Ap,((x,0), (x,0)) = P>((x,0)).
Thus
Ap((x,0), (x,0)) = (P2((1,0)) = Po((x,0)) ) R (x) + Pa((x,0))Ra(x)

= a1010R3 (%, ) + a20R20((x, v)).

Analogously
Ap,((0,), (0,)) = 20101 RTp((x, 1)) + a02Rao (%, y)).

The bilinear form Bj; can be represented as the sum of the symmetric and the antisymmet-
ric forms

1
Bi(x1,x2) = = <BII(x1/x2) + Bri(xo, xl))

2

and .
Bij(x1,22) = 5 <BH(X1,X2) - BII(erxl))
respectively. Let us prove that Bf,(x1, xp) = 0 for every x1, ¥ € Leo.

the other hand, since Bf; is antisymmetric, it follows that

1
27

1o 3y M) = =Bir(T Ao )

Therefore B‘}I(l[O ],1[%,1]) =0. O

1
2
Lemma 2. BY(1g, 1) = 0 for every measurable sets E C [0,1] and F C [1,1].

Proof. For every x € Lo, we define X € Lo, by

[ x(2t), ifte]o, ],
*(t) = { 0, ift € (%,21].

Let z € Lo be such that its restriction to [0, 1) is constant. Let f.(x) = BY,(%, z), where x € Le.

Clearly, f, is a continuous linear functional on L. Let us prove that f, is E-symmetric. For
every o € & let
1 ' 1
- s0(2t), ift € |0, 5],
F(t) =1 2 (2t) 1 = [1 )
t, ift € (5,1].
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Clearly, ¢ € Z and z o & = z. It can be checked that X o ¢ = X o ¢. Therefore by (6)
fulxo0) = BYy(¥50,2) = BYy(F07,205) = By(2,2) = f(%).
Thus fz is E-symmetric. By (3) f(x) = f2(1)Ry(x), i. e. Bf(%X,z) = B%(1,z)R;(x). Since
T=1p1),1e =1k and Ri(1g) = 2u(E), where 2E = {2t : t € E}, it follows that
Bii(1g,z) = B‘I’I(l[ol%],z)Zy(E).

Analogously it can be proven that B;(u,1r) = Bf,(u, 1 1])2y(P), where u € Lo such that its

restriction to (%, 1] is constant. Therefore
Bii(1e,1F) = B?l(l[oé]rlFﬂﬂ(E) = B?l(l[o,%]r1[%,1]>4V(E)P‘(F> =0
by Lemma 1. O

Lemma 3. B%(1g,1¢) = 0 for disjoint measurable sets E,F C [0,1] such that u(E) < % and
u(F) < 3.

Proof. By [1, Proposition 1.2] there exists o r € Z such that 1 = 1[0,,1] ocgrand 1f = 1[a,a 4] ©
orr, where a = u(E) and b = u(F). Let

t—a+%, ift € [a,a+ 1],
oi(t) =4 t—L1+a, ifte[}i+1]
t, otherwise.

Clearly, 0 € Ell[O,a] = 1[0,61] 001 and 1[a,a+b} = 1[

1144 ©01- Therefore 1 = 1jg 5 0 07 © 0, F and
1145 © oy o 0g,r. By (6) and by Lemma 2

B?l(l}g, 11:) = B?l(l[O,u] 0010 U—E,Frl[%,%_._b} 0010 UE,F) = B?l(l[O,a}ll[%,%J,_b]) =0.

Lemma 4. Bf,(1g,1f) = 0 for every disjoint measurable sets E, F C [0,1].

Proof. If u(E) = u(F), then u(E) and u(F) cannot be greater than 1 and B%(1g,1F) = 0
by Lemma 3. Note that Bf;(1g,1r) = 0 if u(E) = 0 or u(F) = 0. Let u(E) > u(F) >

0. Let N = @J . We can choose disjoint measurable subsets E,...,Exy C E such that

—

u(F)
u(E1) = ... = p(En) = pu(F). Set Eo = E\ UY | E;. Then
N
B1 (1, 1F) = ) Bf;(1g, 1¢) = Bf;(1g,, 1F).
j=0
Since p(Eo) < u(F) < 3, it follows that B%(1g,, 1) = 0 by Lemma 3. O

Lemma 5. Bf;(1g,1r) = 0 for every measurable sets E, F C [0,1].

Proof. Note that E = (E\ F) U(ENF)and F = (F\ E) U (ENF). Therefore

B11(1e,1r) = Bj;(1p\r, 1p\E) + Bi(Xe\r, 1EnF) + Bl i(Xenr, 1p\E) + BY (e, 1EnF) =0

by Lemma 4 and by the antisymmetry of Bf;. O
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Proof of the Theorem 1 (continuation). For the simple measurable functions xq, x, € Lo we have
BY,(x1,x2) = 0 by the bilinearity of Bf,. Since the set of simple measurable functions is dense
in Lo, the continuity of Bf; leads to Bf,(x1,xp) = 0 for every x1,x, € L. Thus By = Bj, i.
e. Bjris symmetric. Let Qj; be the restriction of By to the diagonal. Qy; is a continuous 2-
homogeneous E-symmetric polynomial. Therefore by (7) Q;(x) = (Q1(1) — Qui(r))R3(x) +
Qr(r)Ra(x).

By (2) Byi(x,y) = %(Qn(x +y) — Qu(x— y)) Since

Bii(x,y) = Ap,((x,0),(0,y)), Qu(1) = Ap,((1,0),(0,1)), Qr(r) = Ap,((r,0),(0,1)),
1
Ri(x+y) —Ri(x —y) = 4R1(x)R1(y), Ra(x+y)—Rap(x—y) = 4/0 x(t)y(t) dt,
it follows that

Ap,((x,0),(0,y)) = (Ap,((1,0),(0,1)) — Ap,((x,0), (0,1))) R1(x)R1(y)
1

+ Ap, ((1,0), (0, f))/o x(H)y(t) dt = a1001 R10((x,y))Ro1 ((x,¥)) + a11R11((x, ).
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BBeAeHO TOHSITTS] 6AOUHO-CUMETPUUHOTO TIOAIHOMA Ha TPocTopi (Loo)? i MoKasaHo, M0 KOKeH
HeTlepepBHII 6AOUHO-CMMEeTPUUHNI TTOAIHOM CTereHs! IIOHalbiAbIIe ABa Ha TIPOCTOPi (Lo)? MO-
KHa €AVHVIM YMHOM BMPA3WUTH depes AesiKi “ereMeHTapHi” 6A0YHO-CHMETPIIHI TOAITHOMIL.

Kontouosi cnosa i ppasu: 6AOUHO-CUMETPUYHIMI IIOAIHOM, CUMeTpUYHA (PYHKIIIS Ha Leo.



