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UNIFORM BOUNDARY CONTROLLABILITY OF A DISCRETE 1-D SCHRÖDINGER

EQUATION

In this paper we study the controllability of a finite dimensional system obtained by discretizing

in space and time the linear 1-D Schrödinger equation with a boundary control. As for other prob-

lems, we can expect that the uniform controllability does not hold in general due to high frequency

spurious modes. Based on a uniform boundary observability estimate for filtered solutions of the

corresponding conservative discrete system, we show the uniform controllability of the projection

of the solutions over the space generated by the remaining eigenmodes.
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INTRODUCTION

Let us consider the 1-D Schrödinger equation







ut(x, t) + iuxx(x, t) = 0, 0 < x < 1, 0 < t < T,

u(0, t) = u(1, t) = 0, 0 < t < T,

u(x, 0) = u0(x), 0 < x < 1,

(1)

where u0 ∈ H1
0(0, 1). It is well known that the energy

E(t) =
1

2

∫ 1

0
|ux(x, t)|2 dx (2)

of the solutions is conserved in time. Applying Fourier series techniques one can prove a

boundary observability inequality showing that, for every T > 0, there exists C = C(T) > 0

such that

E(0) ≤ C
∫ T

0
|ux(1, t)|2 dt (3)

for every solution of (1).

As a consequence of this observability inequality and the HUM method [10], the following

boundary controllability property may be proved.

For all T > 0 and y0 ∈ H−1(0, 1) there exists a control v ∈ L2(0, T) such that the solution of







yt(x, t) + iyxx(x, t) = 0, 0 < x < 1, 0 < t < T,

y(0, t) = 0, y(1, t) = v, 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1,

(4)
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satisfies y(T) = 0.

This article aims at studying the observability and the controllability properties for space-

discrete and fully discrete approximations schemes of (1) and (4).

In the last years many works have dealt with the numerical approximations of the control

problem of the wave equation using the HUM approach [1, 4, 11]. It is by now well-known

that discretization processes may create high frequency spurious solutions which might lead

to non-uniform observability properties. The conclusion was that the controllability property

is not uniform as the discretization parameter h goes to zero and, consequently, the control of

the discrete model do not converge to the control of the continuous model. Some remedies

are then necessary to restore the convergence of the discrete control to the continuous one. We

can mention the Tychonoff regularization [6], a mixed finite element method [1], or a filtering

technique [7]. In the context of fully discrete conservative equations, we refer to [3], which

deals with very general approximation schemes for conservative linear systems. For space

semi-discrete approximations of Shrödinger equation, we mention the work [2] which study

interior observability and controllability properties, based on spectral estimates. Let us also

mention that the time semi-discrete Schrödinger equation has been studied in [13]. Our article

seems to be the first one that deals with fully discrete Schrödinger equation in details providing

an uniform result of boundary controllability.

The outline of this paper is as follows.

The second section briefly recalls some controllability results for the Schrödinger equation.

In section 3, we study the space discrete observability and controllability properties. Section 4

is devoted to prove observability and controllability problems of fully discrete approximation

schemes of (1) and (4).

1 THE CONTINUOUS PROBLEM

In this section, we recall briefly the controllability property of the Schrödinger system (4)

(see [10, 14] for more details).

Theorem 1. For all T > 0 and (y0) ∈ H−1(0, 1) there exists a control v ∈ L2(0, T) such that the

solution of (4) satisfies y(T) = 0.

Multiplying in (4) by ū, integrating by parts in (0, 1) × (0, T) and using the equations (1)

that u satisfies we deduce that

i
∫ T

0
vūx(1)dt +

∫ 1

0
y0ū0dx =

∫ 1

0
y(T)ū(T)dx.

Taking imaginary parts in the last equality, we deduce that

Re
∫ T

0
vūx(1)dt + Im

∫ 1

0
y0ū0dx = 0.

Here and in the sequel Re, Im and ū stand respectively for the real part, the imaginary part of

a complex number and the conjugate of u.

The control of minimal L2-norm can be obtained by minimizing functional J : H1
0(0, 1) → R

defined as follows:

J(u0) =
1

2

∫ T

0
|ux(1, t)|2dt − Im

∫ 1

0
y0ū0dx. (5)

The functional J is continuous and convex. Moreover, J is coercive because of the observability

inequality (3). Then, the following result holds.
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Theorem 2. Given any T > 0 and y0 ∈ H−1(0, 1) the functional J has an unique minimizer

û0 ∈ H1
0(0, 1). If û is the corresponding solution of (1) with initial data û0 then v(t) = −ûx(1, t)

is the control of (4) with minimal L2-norm.

As said in the introduction, the controllability property is equivalent to the observability

inequality (3).

Let us finally remark that the solution of (1) admits the Fourier expansion

u(x, t) = ∑
k>0

ckeik2π2t sin(kπx),

with suitable Fourier coefficients depending on the initial data u0.

2 SPACE SEMI-DISCRETIZATIONS

In this section, we consider the space semi-discrete version of the continuous observability

and controllability problems. Let N be a nonnegative integer. Set h = 1
N+1 and consider the

subdivision of (0, 1) given by

0 = x0 < x1 = h < · · · < xj = jh < · · · < xN+1 = 1,

i.e., xj = jh for all j = 0, . . . , N + 1. Consider the following finite difference approximation of

(4):










y′j(t) + i
yj+1(t)−2yj(t)+yj−1(t)

h2 = 0, 0 < t < T, j = 1, . . . , N,

y0(t) = 0, yN+1(t) = vh(t), 0 < t < T,

yj(0) = y0
j , j = 1, . . . , N.

(6)

As in the context of the continuous Schrödinger equation above, we consider the uncon-

trolled system










u′
j(t) + i

uj+1(t)−2uj(t)+uj−1(t)

h2 = 0, 0 < t < T, j = 1, . . . , N,

u0(t) = uN+1(t) = 0, 0 < t < T,

uj(0) = u0
j , j = 1, . . . , N.

(7)

The energy of system (7) is given by

Eh(t) =
h

2

N

∑
j=0

∣

∣

∣

∣

uj+1(t)− uj(t)

h

∣

∣

∣

∣

2

,

which is a discretization of the continuous energy E(t). It is easy to see that the energy Eh is

conserved along time for the solutions of (7), i.e.

Eh(t) = Eh(0) for all 0 < t < T.

We observe that the system (7) can be rewritten in the following simplified form

u′
h(t)− iAhuh(t) = 0, 0 < t < T, uh(0) = u0

h, (8)

where uh stands for the column vector (u1, . . . , uN)
T, Ah denotes the matrix

Ah =
1

h2













2 −1 0 0

−1
. . . . . . 0

0
. . . . . . −1

0 0 −1 2












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entering in the finite difference discretization of the Laplacian with Dirichlet boundary condi-

tions. We consider the eigenvalue problem associated with (7):
{

i
Φj+1−2Φj+Φj−1

h2 = βjΦj, j = 1, . . . , N,

Φ0 = ΦN+1 = 0.
(9)

Let us denote by β1,h, . . . , βN,h the N eigenvalues of (9). These eigenvalues can be computed

explicitly [8]. We have

βk,h = −iλk,h = −i
4

h2
sin2

(πhk

2

)

, k = 1, . . . , N.

The eigenfunction Φk,h = (Φk,h
1 , . . . , Φ

k,h
N ) associated to the eigenvalue βk,h can also be com-

puted explicitly:

Φ
k,h
j = sin(jπhk), j = 1, . . . , N.

Solutions of (7) admit a Fourier development on the basis of eigenvectors of system (9). More

precisely, every solution uh = (uj)j of (7) can be written as

uh(t) =
N

∑
k=1

akeiλk,htΦk,h,

for suitable coefficients ak ∈ C, k = 1, . . . , N, that can be computed explicitly in terms of the

initial data.

2.1 Uniform observability of (7)

The main goal of this subsection is to analyze the following discrete version of (3):

Eh(0) ≤ C(T, h)
∫ T

0

∣

∣

∣

∣

uN(t)

h

∣

∣

∣

∣

2

dt, (10)

where C(T, h) is independent of the solution of (7).

The observability inequality (10) is said to be uniform, if the constants C(T, h) are bounded

uniformly in h, as h → 0. However, the following result asserts that this is false.

Theorem 3. Let u is a solution of (7). For any T > 0 we have

sup
u







Eh(0)
∫ T

0

∣

∣

∣

uN(t)
h

∣

∣

∣

2
dt






→ ∞ as h → 0.

Before getting into the proof of Theorem 3, let us recall the following property of the eigen-

vectors of (9) proved in [7].

Lemma 1. For any eigenvector Φ with eigenvalue β of (9), the following identity holds:

h
N

∑
j=0

∣

∣

∣

∣

Φj+1 − Φj

h

∣

∣

∣

∣

2

=
2

4 − iβh2

∣

∣

∣

∣

ΦN

h

∣

∣

∣

∣

2

=
2

4 − λh2

∣

∣

∣

∣

ΦN

h

∣

∣

∣

∣

2

.

Proof of Theorem 3. For h > 0, consider the particular solution of (7)

uh(t) = eiλN,htΦN,h.
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For this solution we have

Eh(0) = h
N

∑
j=0

∣

∣

∣

∣

∣

∣

Φ
N,h
j+1 − Φ

N,h
j

h

∣

∣

∣

∣

∣

∣

2

=
2

4 − λN,hh2

∣

∣

∣

∣

∣

Φ
N,h
N

h

∣

∣

∣

∣

∣

2

.

On the other hand,
∫ T

0

∣

∣

∣

∣

uN(t)

h

∣

∣

∣

∣

2

dt = T

∣

∣

∣

∣

∣

Φ
N,h
N

h

∣

∣

∣

∣

∣

2

.

Note that

4 − λN,hh2 = 4 − 4 sin2
(π

2
−

πh

2

)

= 4 − 4 cos2
(πh

2

)

→ 0 as h → 0.

Thus, the result is established. �

To overcome this obstacle, we rule out the high frequency spurious modes. We define

Cs = span{Φk,h such that λk,h ≤ s}.

In order to obtain a positive counterpart to Theorem 3, we have to introduce suitable sub-

classes of solutions of (7) generated by eigenvectors of (9) associated with eigenvalues such that

λh2 ≤ γ. For a given γ ∈ (0, 4), we take solutions of (7) in Cγ/h2 .

We are ready to prove the following uniform boundary observability of the discrete

Schrödinger equation.

Theorem 4. Let 0 < γ < 4. For all T > 0 there exist C = C(T, γ) > 0 such that

Eh(0) ≤ C
∫ T

0

∣

∣

∣

∣

uN(t)

h

∣

∣

∣

∣

2

for every solution uh of (8) with u0
h ∈ Cγ/h2 .

Sketch of the proof. In the range of eigenvalues λh2 ≤ γ, according to the identity of Lemma 1,

it follows that

h
N

∑
j=0

∣

∣

∣

∣

Φj+1 − Φj

h

∣

∣

∣

∣

2

≤
2

4 − γ

∣

∣

∣

∣

ΦN

h

∣

∣

∣

∣

2

(11)

for any eigenvector Φ = (Φ1, . . . , ΦN) associated to an eigenvalue β such that iβh2 ≤ γ, or

equivalent λh2 ≤ γ.

Let us now consider a solution uh of (7) in the class Cγ/h2 . It can be written as

uh(t) = ∑
λk,hh2≤γ

akeiλk,htΦk,h.

As was proved in [9], roughly speaking, the asymptotic gap tends to infinity as k → ∞, uni-

formly on the parameter h. Then applying Lemma 2.3 [9] and using (11) we deduce that for

T > 0,

C(T, γ)
∫ T

0

∣

∣

∣

∣

uN(t)

h

∣

∣

∣

∣

2

≥ ∑
λk,hh2≤γ

|ak|
2h

N

∑
j=0

∣

∣

∣

∣

∣

∣

Φ
k,h
j+1 − Φ

k,h
j

h

∣

∣

∣

∣

∣

∣

2

.

Moreover,

Eh(0) =
1

2 ∑
λk,hh2≤γ

|ak|
2h

N

∑
j=0

∣

∣

∣

∣

∣

∣

Φ
k,h
j+1 − Φ

k,h
j

h

∣

∣

∣

∣

∣

∣

2

.

Therefore, we obtain the desired inequality.
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2.2 Uniform controllability of (6)

In this subsection we apply the observability result obtained above to analyze the control-

lability properties of the semi-discrete system (6).

For every s ∈ R, introduce the finite dimensional Hilbert spaces

Hs
h = span{Φ1,h , . . . , ΦN,h}

endowed with the norm

‖ fh‖
2
Hs

h
=

N

∑
k=1

λs
k,h|dk|

2, whenever fh =
N

∑
k=1

dkΦk,h,

where λk,h = 4
h2 sin2( kπh

2 ).

Let 0 < γ < 4 and T > 0. The partial controllability problem of system (6) in the space

H−1
h consists in finding a control vh ∈ L2(0, T) such that the solution yh = (yj)j of (6) satisfies

Πγ(yh(T)) = 0, (12)

where Πγ is the orthogonal projection over Cγ/h2 .

Multiplying (6) by ūj, adding in j and integrating in time, we get

Im h
N

∑
j=0

y0
j ū0

j − Re
∫ T

0
vh(t)

ūN(t)

h
dt = 0.

We obtain the following characterization of the partial controllability property of system (6).

Lemma 2. Let T > 0 and 0 < γ < 4. Problem (6) is partially controllable in H−1
h if for every

y0
h ∈ H−1

h there exists a control vh such that

Im h
N

∑
j=0

y0
j ū0

j = Re
∫ T

0
vh(t)

ūN(t)

h
dt,

for any initial data u0
h ∈ Cγ/h2 .

The following uniform partial controllability property holds in the space Cγ/h2 .

Theorem 5. For all T > 0 and 0 < γ < 4, the problem (6) is partially controllable in H−1
h for

all 0 < h < 1. Moreover, we have:

(a) the corresponding controls vh in the semi-discrete system (6) satisfying (12) are bounded

in L2(0, T);

(b) the controls vh converge as h → 0 to a control v ∈ L2(0, T) of the minimal L2(0, T)-norm

of the system (4) such that y(T) = 0.

The proof of this theorem is similar to that in [9], also it can be done as the proof in subsec-

tion 4.2.
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3 FULLY DISCRETE APPROXIMATIONS

Let M, N ∈ N. We set h = 1
N+1 and ∆t = T

M+1 and introduce the nets

0 = x0 < x1 = h < · · · < xj = jh < · · · < xN+1 = 1,

0 = t0 < t1 = ∆t < · · · < tk = k∆t < · · · < tM+1 = 1.
(13)

We consider the following Crank-Nicolson discretization of (4)















yn+1
j −yn

j

∆t + i
yn+1

j+1 +yn+1
j−1 −2yn+1

j

2h2 + i
yn

j+1+yn
j−1−2yn

j

2h2 = 0, j = 1, . . . , N, n = 1, . . . , M,

yn
0 = 0,

yn+1
N+1+yn

N+1
2 = vn

h , n = 1, . . . , M,

y0
j = y0j, j = 1, . . . , N.

(14)

We shall denote by ỹn = (yn
1 , . . . , yn

N) the solution at the time step n. We consider also the

system














un+1
j −un

j

∆t + i
un+1

j+1 +un+1
j−1 −2un+1

j

2h2 + i
un

j+1+un
j−1−2un

j

2h2 = 0, j = 1, . . . , N, n = 1, . . . , M,

un
0 = un

N+1 = 0, n = 1, . . . , M,

u0
j = u0j, j = 1, . . . , N.

(15)

Simple formal calculations give

ũn+1 = (I −
∆t

2
iAh)

−1(I +
∆t

2
iAh)ũ

n = eiαk,h∆tũn,

where ũn = (un
1 , . . . , un

N) is the solution at the time step n and eiαk,h∆t =
1+ ∆t

2 iλk,h

1− ∆t
2 iλk,h

. Writing

ũ0 =
N

∑
k=1

akΦ̃k,

then the solution ũn is given by

ũn =
N

∑
k=1

akeiαk,hn∆tΦ̃k, (16)

with ak ∈ C, Φ̃k = (Φk,h
1 , . . . , Φ

k,h
N ) = (sin(kπh), . . . , sin(Nkπh)) and

αk,h =
2

∆t
arctan

(λk,h∆t

2

)

.

The energy of (15) is

En =
h

2

N

∑
j=0

∣

∣

∣

∣

∣

un
j+1 − un

j

h

∣

∣

∣

∣

∣

2

,

which is a discretization of the continuous energy E in (2), and it is conserved in all the time

steps: En = E0, n = 0, . . . , M, for the solutions of (15).

3.1 Uniform observability of (15)

In this subsection, our goal is to prove the uniform observability inequality of system (15).

We have the following theorem.
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Theorem 6. Let 0 < γ < 4. Assume that

h2

∆t
≤ τ, (17)

where τ is a positive constant. Then for any 0 < δ <
γ
τ , there exists Tδ such that for any T > Tδ

there exists CT,δ,γ such that the observability inequality

E0 ≤ CT,δ,γ∆t
M

∑
n=0

∣

∣

∣

∣

∣

un+1
N + un

N

2h

∣

∣

∣

∣

∣

2

(18)

holds for every solution of (15) with initial data in the class Cδ/∆t for all h and ∆t small enough

satisfying (17).

The proof of this Theorem will essentially rely on the following Theorem proved in [5].

Theorem 7. Let I = N or Z and (µj)j∈N be an increasing sequence of real numbers such that,

for some θ > 0,

inf
j∈I

|µj+1 − µj| ≥ θ. (19)

Let f be a smooth function satisfies the assumptions: f ∈ C∞ and satisfies f (0) = 0, f ′(0) = 1;

f is odd; f : [−R, R] → [−π, π], where R ∈ R
∗
+ ∪ {+∞}; inf{ f ′(α)||α| ≤ δ} > 0, where

δ ∈ (0, R). Then for all time

T >
2π

θ inf
|α|≤δ

f ′(α)

there exist two positive constants C and τ0 > 0 such that for all τ ∈ (0, τ0), for all (aj)j∈I ∈ l2(I)

vanishing for j ∈ I such that |µj|τ ≥ δ,

1

C∑
j∈I

|aj |
2 ≤ τ ∑

kτ∈(0,T)

∣

∣

∣

∣

∣

∑
j∈I

aje
i f (µjτ)k

∣

∣

∣

∣

∣

2

≤ C∑
j∈I

|aj |
2.

Proof of Theorem 6. The energy of solutions (15) is

E0 =
h

2

N

∑
j=0

∣

∣

∣

∣

∣

u0
j+1 − u0

j

h

∣

∣

∣

∣

∣

2

=
h

2 ∑
λk,h≤

δ
∆t

|ak|
2λk,h

N

∑
j=0

∣

∣

∣Φ
k,h
j

∣

∣

∣

2
,

where we used

N

∑
j=0

∣

∣

∣

∣

∣

∣

Φ
k,h
j+1 − Φ

k,h
j

h

∣

∣

∣

∣

∣

∣

2

= λk,h

N

∑
j=0

∣

∣

∣
Φ

k,h
j

∣

∣

∣

2
.

Normalizing the eigenvector Φk,h, i.e. h
N

∑
j=0

∣

∣

∣
Φ

k,h
j

∣

∣

∣

2
= 1, we get

E0 =
2

h2 ∑
λk,h≤

δ
∆t

|ak|
2 sin2

(

kπh

2

)

=
2

h2 ∑
λk,h≤

δ
∆t

|ak|
2 sin2(kπh)

4 cos2( kπh
2 )

=
1

2 ∑
λk,h≤

δ
∆t

|bk|
2

4 + λ2
k,h∆t2

4 cos2( kπh
2 )

,

where

bk = (−1)kak(1 + eiαk,h∆t)
sin(kπh)

2h
.
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Here we used the fact that

|1 + eiαk,h∆t|2 = 4 cos2
(αk,h∆t

2

)

=
16

4 + λ2
k,h∆t2

.

In virtue of (17), we have C δ
∆t
⊂ C γ

h2
and then we get

1

4 cos2(
αk,h∆t

2 )
≤

1

4 − γ
and 4 + λ2

k,h∆t2 ≤ 4 + δ2.

On the other hand, we have

∆t
M

∑
n=0

∣

∣

∣

∣

∣

un+1
N + un

N

2h

∣

∣

∣

∣

∣

2

= ∆t
M

∑
n=0

∣

∣

∣

∣

∣

∣

∑
λk,h≤

δ
∆t

akeiαk,hn∆t(1 + eiαk,h∆t)
ϕ
|k|,h
N

2h

∣

∣

∣

∣

∣

∣

= ∆t
M

∑
n=0

∣

∣

∣

∣

∣

∣

∑
λk,h≤

δ
∆t

bkeiαk,hn∆t

∣

∣

∣

∣

∣

∣

2

= ∆t
M

∑
n=0

∣

∣

∣

∣

∣

∣

∑
λk,h≤

δ
∆t

bkei f (λk,h∆t)n

∣

∣

∣

∣

∣

∣

2

,

where f (t) = 2 arctan( t
2 ). It is clear that the function f satisfies the assumptions of Theorem

7. Besides, it was proved in [9] that for all ε ∈ (0, 1), we have

λk+1,h − λk,h ≥ 3π2 − ε.

Consequently (19) is verified with θ = 3π2 − ε. Applying Theorem 7, we obtain

E0 ≤
C(4 + δ2)

4 − γ
∆t

M

∑
n=0

∣

∣

∣

∣

∣

un+1
N + un

N

2h

∣

∣

∣

∣

∣

2

,

for all T > Tδ =
π(4+δ2)

2θ .

3.2 Uniform controllability of (14)

In this part, we present the following uniform partial controllability result for system (14)

and the convergence result for the controls.

The partial controllability problem for system (14) in the space H−1
h consists of finding a

control (vn
h )0,1,...,M such that for all initial data ỹ0 ∈ H−1

h the solution ỹn of (14) satisfies

PδỹM+1 = 0,

where δ is the same in Theorem 6 and Pδ is the orthogonal projection over Cδ/∆t.

The main result of this paper reads as follows.

Theorem 8. Let T, γ, τ and δ be given as in Theorem 6. Then for every ∆t and h small enough

and every y0 ∈ H−1(0, 1), the system (14) is partially controllable on H−1
h with controls vn

h .

Moreover, we have:

i) the controls of minimal norm are uniformly bounded with respect to ∆t;

ii) the controls vn
h converge to a control v of the minimal L2-norm of the controllable system

(4).
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Proof. For any given T > Tδ, choose γ, τ and δ as in Theorem 6 to guarantee the uniform

observability (18). Multiplying the first equation in (14) by a solution
ūn+1

j +ūn
j

2 of (15), adding in

j and n and taking the imaginary parts, we get

Re ∆t
M

∑
n=0

vn
h

ūn+1
N + ūn

N

2h
− Im h

N

∑
j=0

y0
j ū0

j = 0. (20)

Let ũn ∈ Cδ/∆t be the solution of (15) with initial data ũ0 and define the functional

Jh,∆t : R
n → R by

Jh,∆t(ũ
0) =

∆t

2

M

∑
n=0

∣

∣

∣

∣

∣

un+1
N + un

N

2h

∣

∣

∣

∣

∣

2

− Im h
N

∑
j=0

y0
j ū0

j .

For ũn ∈ Cδ/∆t we have
∣

∣

∣

∣

∣

Im h
N

∑
j=0

y0
j ū0

j

∣

∣

∣

∣

∣

≤
∣

∣

∣
(Pδỹ0, ¯̃u0)

RN

∣

∣

∣
≤ ‖Pδỹ0‖H−1

h
‖ũ0‖H1

h
. (21)

The functional Jh,∆t is continuous and convex. Moreover, in view of the observability inequality

(18), it is clear that Jh,∆t is coercive. Thus, there exists unique minimizer û0 of Jh,∆t,

Jh,∆t(û
0) = min

ũ0∈Cδ/∆t

Jh,∆t(ũ
0).

Let ûn ∈ Cδ/∆t be the solution of the system (15) with initial data û0. The û0 satisfies the

Euler-Lagrange equation. Calculating The Gateaux derivative of Jh,∆t in û0, we get

0 = lim
t→0

Jh,∆t(û
0 + tũ0)− Jh,∆t(û

0)

t
= Re ∆t

M

∑
n=0

ûn+1
N + ûn

N

2h

ūn+1
N + ūn

N

2h
− Im h

N

∑
j=0

y0
j ū0

j .

Therefore, according to (20) we choose the control function vn
h in system (14) as follows

vn
h =

ûn+1
N + ûn

N

2h
, n = 0, . . . , M.

We now check the uniform boundedness of the controls vn
h . We have

Jh,∆t(û
0) ≤ Jh,∆t(0) = 0,

and by (21), we get

∆t

2

M

∑
n=0

∣

∣

∣

∣

∣

ûn+1
N + ûn

N

2h

∣

∣

∣

∣

∣

2

≤ ‖Pδỹ0‖H−1
h
‖ũ0‖H1

h
.

Applying the observability inequality (18) we obtain

∆t
M

∑
n=0

∣

∣

∣

∣

∣

ûn+1
N + ûn

N

2h

∣

∣

∣

∣

∣

2

≤ 2

√

2C(4 + δ2)

4 − γ
‖Pδỹ0‖H−1

h



∆t
M

∑
n=0

∣

∣

∣

∣

∣

ûn+1
N + ûn

N

2h

∣

∣

∣

∣

∣

2




1
2

,

where we used

E0 =
1

2
‖ũ0‖H1

h
.

Consequently, the controls vn
h =

ûn+1
N +ûn

N
2h satisfy

(

∆t
M

∑
n=0

|vn
h |

2

) 1
2

≤ C(T, δ, γ)‖Pδ ỹ0‖H−1
h

.
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Therefore, the controls are uniformly bounded with respect to ∆t.

Let us now give some details for the proof of the convergence result. Indeed the proof is

standard and one may use the method developed in [12]. Note that with the notations (16), the

controls (vn
h ) are of the form

1

2h ∑
λk,h≤δ/∆t

mkeiαk,hn∆t(1 + eiαk,h∆t) sin(kπNh),

where (mk)k are the Fourier coefficients of the solution ûn ∈ Cδ/∆t of (15), with initial data û0

being the minimizer of the functional Jh,∆t.

We define the continuous extension of the discrete controls by

vh(t) =
1

2h ∑
λk,h≤δ/∆t

mkeiαk,ht(1 + eiαk,h∆t) sin(kπNh).

Now, from the boundedness of (vn
h), we see that, extracting subsequences, for some v ∈

L2(0, T) and û0 ∈ H1
0(0, 1), vh → v weakly in L2(0, T), û0

h → û0 weakly in H1
0(0, 1), as ∆t → 0.

Moreover, one can show by standard arguments, that

v = −ûx(1, t),

where û is the solution of (1) with initial data û0 ∈ H1
0(0, 1), the unique minimizer of the

functional J given in (5). Letting ∆t → 0 and ∆x → 0 in (20), we get

Re
∫ T

0
vūx(1)dt + Im

∫ 1

0
y0ū0dx = 0,

and this later condition implies that the solution of system (4) with control v given as above

satisfies y(T) = 0.

On the other hand, taking into account the convergence of the linear term of the discrete

functional Jh,∆t to the linear term of the discrete continuous functional J, and the structure of J

and Jh,∆t, we deduce that

∫ T

0
|vh|

2dt →
∫ T

0
|v|2dt as ∆ → 0.

This combined with the weak convergence ensure the strong convergence desired.
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Хаджеж З., Балех М. Рiвномiрна гранична керованiсть дискретного 1-D рiвняння Шредiнгера //

Карпатськi матем. публ. — 2015. — Т.7, №2. — C. 259–270.

У статтi дослiджується керованiсть системи скiнченної розмiрностi, яка отримана в резуль-

татi дискретизацiї в просторi та часi лiнiйного 1-D рiвняння Шредiнгера з граничним контро-

лем. Як i для iнших задач, можна очiкувати, що рiвномiрна керованiсть не виконується у

загальному випадку у зв’язку з високою частотою появи некоректних моделей. Базуючись на

рiвномiрнiй граничнiй спостережуванiй оцiнцi для фiльтрованих розв’язкiв вiдповiдної кон-

сервативної дискретної системи, показано рiвномiрну керованiсть проекцiї розв’язкiв на про-

стiр, породжений рештою власних форм.

Ключовi слова i фрази: спостережуванiсть, контрольованiсть, фiльтрування.


