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UNIFORM BOUNDARY CONTROLLABILITY OF A DISCRETE 1-D SCHRODINGER
EQUATION

In this paper we study the controllability of a finite dimensional system obtained by discretizing
in space and time the linear 1-D Schrodinger equation with a boundary control. As for other prob-
lems, we can expect that the uniform controllability does not hold in general due to high frequency
spurious modes. Based on a uniform boundary observability estimate for filtered solutions of the
corresponding conservative discrete system, we show the uniform controllability of the projection
of the solutions over the space generated by the remaining eigenmodes.
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INTRODUCTION

Let us consider the 1-D Schrodinger equation

ur(x,t) +iuge(x,6) =0, 0<x<1, 0<t<T,
u(0,t) =u(1,t) =0, 0<t<T, (1)
u(x,0) = u%(x), 0<x<1,

where u° € H}(0,1). It is well known that the energy

1
BW) =5 [ nx P dx e

of the solutions is conserved in time. Applying Fourier series techniques one can prove a
boundary observability inequality showing that, for every T > 0, there exists C = C(T) > 0
such that

T
E(0) < c/ 2 (1,62 dt 3)
0
for every solution of (1).
As a consequence of this observability inequality and the HUM method [10], the following

boundary controllability property may be proved.
Forall T > 0and y° € H1(0,1) there exists a control v € L?(0, T) such that the solution of

Ye(x, 1) +iyex(x,t) =0, 0<x<1, 0<t<T,
y(0,t) =0, y(1,t) =v, 0<t<T, 4)
y(x,0) = y°(x), 0<x<1l,
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satisfies y(T) = 0.

This article aims at studying the observability and the controllability properties for space-
discrete and fully discrete approximations schemes of (1) and (4).

In the last years many works have dealt with the numerical approximations of the control
problem of the wave equation using the HUM approach [1, 4, 11]. It is by now well-known
that discretization processes may create high frequency spurious solutions which might lead
to non-uniform observability properties. The conclusion was that the controllability property
is not uniform as the discretization parameter / goes to zero and, consequently, the control of
the discrete model do not converge to the control of the continuous model. Some remedies
are then necessary to restore the convergence of the discrete control to the continuous one. We
can mention the Tychonoff regularization [6], a mixed finite element method [1], or a filtering
technique [7]. In the context of fully discrete conservative equations, we refer to [3], which
deals with very general approximation schemes for conservative linear systems. For space
semi-discrete approximations of Shrodinger equation, we mention the work [2] which study
interior observability and controllability properties, based on spectral estimates. Let us also
mention that the time semi-discrete Schrodinger equation has been studied in [13]. Our article
seems to be the first one that deals with fully discrete Schrodinger equation in details providing
an uniform result of boundary controllability.

The outline of this paper is as follows.

The second section briefly recalls some controllability results for the Schrodinger equation.
In section 3, we study the space discrete observability and controllability properties. Section 4
is devoted to prove observability and controllability problems of fully discrete approximation
schemes of (1) and (4).

1 THE CONTINUOUS PROBLEM

In this section, we recall briefly the controllability property of the Schrédinger system (4)
(see [10, 14] for more details).

Theorem 1. Forall T > 0 and (y°) € H1(0,1) there exists a controlv € L?(0, T) such that the
solution of (4) satisfies y(T) = 0.

Multiplying in (4) by i, integrating by parts in (0,1) x (0, T) and using the equations (1)
that u satisfies we deduce that

i/OTvﬂx(l)dtJr/OlyOﬁde - /Oly(T)a(T)dx.

Taking imaginary parts in the last equality, we deduce that

T 1
Re/ vily(1)dt + Im/ yildx = 0.
0 0

Here and in the sequel Re, Im and 1 stand respectively for the real part, the imaginary part of
a complex number and the conjugate of u.

The control of minimal L2-norm can be obtained by minimizing functional ] : H3(0,1) — R
defined as follows:

oy _ 1 /T 2 ' oo
J(u”) = 5/0 lux(1,1)| dt—Im/O y i dx. 5)

The functional | is continuous and convex. Moreover, | is coercive because of the observability
inequality (3). Then, the following result holds.
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Theorem 2. Given any T > 0 and y° € H~1(0,1) the functional | has an unique minimizer
7% € HY(0,1). If il is the corresponding solution of (1) with initial data i° then v(t) = —1(1,t)
is the control of (4) with minimal L?-norm.

As said in the introduction, the controllability property is equivalent to the observability
inequality (3).

Let us finally remark that the solution of (1) admits the Fourier expansion

u(x, t) =Yy e ™ sin(kmx),
k>0

with suitable Fourier coefficients depending on the initial data u".

2 SPACE SEMI-DISCRETIZATIONS

In this section, we consider the space semi-discrete version of the continuous observability
and controllability problems. Let N be a nonnegative integer. Set 1 = A7 and consider the

+1
subdivision of (0,1) given by

O:x0<x1:h<---<x]-:jh<---<xN+1:1,

ie,x; =jhforallj=0,...,N+1. Consider the following finite difference approximation of
(4):
yi(h) +z’yf““)’2ylj§t”yf*1(t) —0, 0<t<T, j=1,..N,
yo(t) =0, yns1(t) =ou(t),  0<t<T, (6)
yj(0) =y}, j=1,...,N.

As in the context of the continuous Schrodinger equation above, we consider the uncon-
trolled system

ui(p) + 200 g g << T, j=1,...,N,
uo(t> = MN+1(t> =0, 0<t<T, (7)

u;j(0) = u?, j=1,...,N.

The energy of system (7) is given by

u]—i—l (t)

hN
_Eg

which is a discretization of the continuous energy E(t). It is easy to see that the energy Ej, is
conserved along time for the solutions of (7), i.e.

E,(t) = E;(0) forall 0<t<T.

We observe that the system (7) can be rewritten in the following simplified form

up, () —iApup(t) =0, 0 <t < T, u(0) = 142, (8)
where u, stands for the column vector (u4,...,u N)T, Aj, denotes the matrix
2 -1 0 0
1 (-1 0
A = —
TR 1
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entering in the finite difference discretization of the Laplacian with Dirichlet boundary condi-
tions. We consider the eigenvalue problem associated with (7):

O —20+D;_; .
{1“4_;3] i, j=1...,N,

)
D) =Dny1 =0

Let us denote by By ,..., By the N eigenvalues of (9). These eigenvalues can be computed
explicitly [8]. We have

Bin = —iAky = —z% sin (%}lk), k=1,...,N.
The eigenfunction & = (@’{’h PR @'Z‘\’lh ) associated to the eigenvalue By, can also be com-
puted explicitly:
o = sin(jhk), j=1,...,N.
Solutions of (7) admit a Fourier development on the basis of eigenvectors of system (9). More
precisely, every solution u;, = (u;); of (7) can be written as

N .
uh(t) — Z ﬂkel)\k'htq)k'h,
k=1

for suitable coefficients a, € C, k = 1,..., N, that can be computed explicitly in terms of the
initial data.
2.1 Uniform observability of (7)
The main goal of this subsection is to analyze the following discrete version of (3):
T

un(t)
h

E(0) < C(T, ) / dt, (10)

0

where C(T, &) is independent of the solution of (7).
The observability inequality (10) is said to be uniform, if the constants C(T, h) are bounded
uniformly in k, as h — 0. However, the following result asserts that this is false.

Theorem 3. Let u is a solution of (7). For any T > 0 we have

™
=
—~

(e}
~—

—_— h — 0.
sgp (D ’2 —+o00 as h—
Jo

Before getting into the proof of Theorem 3, let us recall the following property of the eigen-
vectors of (9) proved in [7].

Lemma 1. For any ejgenvector @ with eigenvalue p of (9), the following identity holds:

oy |2

o2 2 oy
N h

— iph2

oy |2 2

7+1 — _
4 — Ah?

Proof of Theorem 3. For h > 0, consider the particular solution of (7)

up(t) = et NI,
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For this solution we have

Nh  sNh N,k
En(0) = hi L M P i
far h 4—Anph? | h
On the other hand, )
2 N,k
0 h h
Note that

e 2 e d—asin? (T o2 (T
4 —Anyh” =4 —4sin (2 2)—4 4cos<2)—>0 as h—0.
Thus, the result is established. O

To overcome this obstacle, we rule out the high frequency spurious modes. We define
Cs = span{®"" such that A;; <s}.

In order to obtain a positive counterpart to Theorem 3, we have to introduce suitable sub-
classes of solutions of (7) generated by eigenvectors of (9) associated with eigenvalues such that
Ah* < . For a given 7y € (0,4), we take solutions of (7) in C, /.

We are ready to prove the following uniform boundary observability of the discrete
Schrodinger equation.

Theorem 4. Let0 < v < 4. Forall T > 0 there exist C = C(T,y) > 0 such that

O)SC/OT

for every solution uy, of (8) with u2 € Cypa-

un ()|

Sketch of the proof. In the range of eigenvalues Ah? < v, according to the identity of Lemma 1,
it follows that
2 |on]?
T 4—vq h
for any eigenvector ¢ = (@1, e @N) associated to an eigenvalue B such that iBh? < 7, or
equivalent A2 < Y.
Let us now consider a solution u, of (7) in the class C, ;. It can be written as

u(t) = ), age Mt o,
Al <

]+1

(11)

As was proved in [9], roughly speaking, the asymptotic gap tends to infinity as k — oo, uni-
formly on the parameter /. Then applying Lemma 2.3 [9] and using (11) we deduce that for
T >0,

T un(6) P k,h 2
UnN +1 ]
cry [ M = X raszhz i s
0 Ak,hh2<')/
Moreover,
. P ki |2
+1 i
En(0) =5 L !ﬂk\zhz i
Ak,hh2<')/

Therefore, we obtain the desired inequality. O
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2.2 Uniform controllability of (6)

In this subsection we apply the observability result obtained above to analyze the control-
lability properties of the semi-discrete system (6).
For every s € IR, introduce the finite dimensional Hilbert spaces

H; = span{®", ... &N/}

endowed with the norm

N N
1full3: = 3 Aipldel?, whenever fi = ) di@"",
k=1 k=1

where Ay, = I;iz sin? (X2
Let0 < v < 4and T > 0. The partial controllability problem of system (6) in the space

H, ! consists in finding a control v, € L2(0, T) such that the solution y;, = (yj); of (6) satisfies

I, (yn(T)) =0, (12)

where I1, is the orthogonal projection over C, /2.
Multiplying (6) by #;, adding in j and integrating in time, we get

N T _
Imh) y?ﬁ? - Re/ vy (t) uNh(t) dt = 0.
j=0 0
We obtain the following characterization of the partial controllability property of system (6).

Lemma 2. Let T > 0 and 0 < vy < 4. Problem (6) is partially controllable in H, L if for every
y2 €H, ! there exists a control v;, such that

N Tt
Im hjz(:)y})ﬁ]o = Re/0 vy (t) Nh( )dt,
for any initial data u) € C,/n2-
The following uniform partial controllability property holds in the space C, /2.

Theorem 5. For all T > 0 and 0 < 7y < 4, the problem (6) is partially controllable in H, ! for
all0 < h < 1. Moreover, we have:

(a) the corresponding controls vy, in the semi-discrete system (6) satisfying (12) are bounded
in L2(0,T);

(b) the controls v, converge as h — 0 to a control v € L?(0, T) of the minimal L*(0, T)-norm
of the system (4) such that y(T) = 0.

The proof of this theorem is similar to that in [9], also it can be done as the proof in subsec-
tion 4.2.
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3 FULLY DISCRETE APPROXIMATIONS

Let M,N € IN. Weseth = ﬁ and At = MLH and introduce the nets

O:x0<x1:h<---<x]-:jh<---<xN+1:1,

(13)
O=tg<t =At<--- <t =kAt < --- <ty =1
We consider the following Crank-Nicolson discretization of (4)
GO AT _
A +}z1+1 n2h2 +1 T =0, j=1,...,N,n=1,..., M,
vy =0, 7““;%’“ = vy, n=1,...,M, (14)
0 _ F
Yi = Yojs j=1,...,N.

We shall denote by 7" = (v/,...,y};) the solution at the time step n. We consider also the
system

u’~1+17u'-1 u’~1+1+u’7+172un+1 w4yt oyl

i —1 1 -1 .
It + i Tra— b—y—1L =0, j=1...,N,n=1,...,M,
ugzu”NH:O, n=1,...,M, (15)
w0 = ug; j=1,...,N

Simple formal calculations give

At At ;
ﬁn+1 — (I _ 71Ah> 1(1 + 7lAh)ﬁn — ewck,hAtﬁn’
) At
where " = (uf,...,u%) is the solution at the time step n and e = % Writing
— 3 Ak
N ~
17[0 = Z akCI)k,
k=1
then the solution #I" is given by
N 3
i = Z akemk,hnAtq)k’ (16)

k=1
witha, € C, & = (@, ..., &%) = (sin(krth), ..., sin(Nkrh)) and

2 Ak pAt
K p = A arctan (T)
The energy of (15) is
2
n . n
- ﬁi’: Ui 1)
25 h ’

which is a discretization of the continuous energy E in (2), and it is conserved in all the time
steps: E" = E%, n=0,..., M, for the solutions of (15).

3.1 Uniform observability of (15)

In this subsection, our goal is to prove the uniform observability inequality of system (15).
We have the following theorem.
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Theorem 6. Let(0 < v < 4. Assume that
h2
A= (17)

where T is a positive constant. Then for any 0 < 6§ < 1, there exists Ts such that for any T > T;
there exists Cr s, such that the observability inequality

2
M un+1 + ui’l
E° < Crgq0tY] W (18)
n=0

holds for every solution of (15) with initial data in the class Cs /s for all h and At small enough
satistying (17).

The proof of this Theorem will essentially rely on the following Theorem proved in [5].

Theorem 7. Let [ = N or Z and (y;);en be an increasing sequence of real numbers such that,
for some 0 > 0,

inf g — i > 6. 19
}gllum il > (19)

Let f be a smooth function satisfies the assumptions: f € C® and satisfies f(0) =0, f'(0) =
fisodd; f : [-R,R] — [—m, 7], where R € R% U {+oco}; inf{f'(a)||a| < 6} > 0, where
0 € (0,R). Then for all time

27

6 inf f'(«)

o] <6
there exist two positive constants C and 1y > 0 such that forall T € (0, 1), for all (a;)c; € I*(I)
vanishing for j € I such that ||t > 6,

T >

2
NI S WICLCLL e i
jel kTe(0,T) |jel jel
Proof of Theorem 6. The energy of solutions (15) is
2
h N uQ — uQ h N
o_ Tyt T 2 2 ) kh
E 2; I > S || )\k,h; N ,
j=0 <27 j=0

where we used X

N | PN — ot N 2

j+1 /N - k.
L h = M) )q’f ) ‘
j=0 j=0
N 2
Normalizing the eigenvector ®*", i.e. hz ’@;"h‘ =1, we get
j=0
2 krh o sin?(kmth) 1 it A At
0 _ 2 _ kh
E'= 5 Y Jag]* sin <T> % Y, la 4C 2(krch 5 Y. b os2 (K’
Men<2 Men<s S% 2
where
sin(k7th)

— (_ k Z‘DCk/hAf
be = (~1)fag(1 4 emuast) S0
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Here we used the fact that

Ock,hAt) . 16

1 4 e %idt2 — 4 cog? < = .
| | 2 44 A2, A2

In virtue of (17), we have C i cC 1 and then we get
: f

1 1
zwwN)§4 7mﬁ4+AﬁA#§4+ﬁ.
4 cos? (24— - ’
2

On the other hand, we have

2
n+1 M |k|,h
u + uft ‘ ; P
N ' YN _ iy At ing Aty TN

At 2 = At) ) - e (1 4 e )—=— o

n=0 )\k,hS%
2 2
_ At} : } : bke’“kﬁ”“ _ At} : } : bkelf()‘krh“)”

=0 | Aen= s =0 | Aen< %

where f(t) = 2arctan(}). It is clear that the function f satisfies the assumptions of Theorem
7. Besides, it was proved in [9] that for all ¢ € (0, 1), we have

Akpip — Ay > 3m% —e.
Consequently (19) is verified with § = 371> — e. Applying Theorem 7, we obtain

2
C(4+52 M uft! +uN

My

n:

E’ <

4

forall T > Ts = 7'[(42—5(52). O

3.2 Uniform controllability of (14)

In this part, we present the following uniform partial controllability result for system (14)
and the convergence result for the controls.

The partial controllability problem for system (14) in the space H, ! consists of finding a
control (v!!)g1,..,m such that for all initial data 7° € H, ! the solution 7" of (14) satisfies

P(SgM+1 — O,

where J is the same in Theorem 6 and P; is the orthogonal projection over Cs ;.
The main result of this paper reads as follows.

Theorem 8. Let T, y, T and ¢ be given as in Theorem 6. Then for every At and h small enough
and every y° € H~1(0,1), the system (14) is partially controllable on H, * with controls v}
Moreover, we have:

i) the controls of minimal norm are uniformly bounded with respect to At;

ii) the controls v!! converge to a control v of the minimal L>-norm of the controllable system

(4)-
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Proof. For any given T > T, choose 7, T and ¢ as in Theorem 6 to guarantee the uniform
g1

observability (18). Multiplying the first equation in (14) by a solution i + i of (15), adding in
j and n and taking the imaginary parts, we get

M n+1

ReAthhW—lthyouo—o (20)
n=0

Let #" € Cj/a be the solution of (15) with initial data #° and define the functional
Jnat : R" — R by

At M un+1+un N
Jnae( ):72 N2h Nl —Imh) yla)
n=0 j=0
For " € Cs,; we have
Imhzy < | (Batf®, )| < 1Pt 12 - 1)

The functional Jj, A is continuous and convex. Moreover, in view of the observability inequality
(18), it is clear that Jj, 5 is coercive. Thus, there exists unique minimizer 19 of Jn,ats

Tnae(0°) = _min T, ae (i1°).
u ECg/At

Let 1" € Cs/a+ be the solution of the system (15) with initial data 79, The 7 satisfies the
Euler-Lagrange equation. Calculating The Gateaux derivative of Jj o; in 1%, we get

- e (80 4 £3°) — Jp,00(2°) M+ ag ay g
0=1 . . = Re At —Imh
20 : EO 2h 2h o ; it
Therefore, according to (20) we choose the control function v} in system (14) as follows
An+1
+
n —_— p—
v, = o , n=20,...,M.

We now check the uniform boundedness of the controls UZ. We have

Tnat(1°) < Juat(0) =0,

and by (21), we get
An+1
+u
o < IR g 2 -

AM
72

Applying the observability mequahty (18) we obtain

M An+1 ~n+1 AN
—|— 2C(4 + 62) N+
< 24| —— || Psi At ,
X:: < o 1By HH 1 ZO T
where we used .
0 -0
B0 = (2]

an+
Consequently, the controls v} = N 2h+ N satisfy

1

(Atz 07| > < C(T,5,7)||Ps7° HH 1.



CONTROLLABILITY OF A DISCRETE 1-D SCHRODINGER EQUATION 269

Therefore, the controls are uniformly bounded with respect to At.

Let us now give some details for the proof of the convergence result. Indeed the proof is
standard and one may use the method developed in [12]. Note that with the notations (16), the
controls (v} ) are of the form

1

5 Y mye kA1 4 b sin (ktN),

Mn<d/ At

where (my); are the Fourier coefficients of the solution " € Cs,/a; of (15), with initial data #°
being the minimizer of the functional Jj, ;.
We define the continuous extension of the discrete controls by

op(t) =5 ), me'™nt (1 + ™) sin(krtNh).
)Lk/h§5/Af

Now, from the boundedness of (ZJZ), we see that, extracting subsequences, for some v €

L2(0,T) and #° € H}(0,1), v, — v weakly in L2(0, T), 2) — 2° weakly in H}(0,1), as At — 0.
Moreover, one can show by standard arguments, that

0 = _ﬁx(ll t),

where 1 is the solution of (1) with initial data #° & Hé (0,1), the unique minimizer of the
functional | given in (5). Letting At — 0 and Ax — 0in (20), we get

T 1
Re/ vily(1)dt + Im/ yildx =0,
0 0

and this later condition implies that the solution of system (4) with control v given as above
satisfies y(T) = 0.

On the other hand, taking into account the convergence of the linear term of the discrete
functional Jj, 5; to the linear term of the discrete continuous functional ], and the structure of |
and Jj o, we deduce that

T T
| tonat = [ JoPdt asa 0.
0 0
This combined with the weak convergence ensure the strong convergence desired. O
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Y cTaTTi AOCAIAXY€ThCSI KePOBaHICTh CUCTeMI CKIHUeHHOI pO3MipHOCTI, SIKa OTpMMaHa B Pe3yAb-
TaTi AMCKpeTHM3allil B IPOCTOPi Ta 4Yaci AinivHoro 1-D pisasms [lpeainrepa 3 rpaHUMYHIM KOHTPO-
AeM. SIK i AAS iHIIMX 3aAa4, MOXHA OUiKyBaTH, IO PiBHOMiIpHa KePOBaHICTh He BUKOHYETHCS Y
3araAbHOMY BUITAAKY Yy 3B’SI3KY 3 BMCOKOIO YaCTOTOIO MOSIBY HEKOPEKTHIX MOAeAeit. basyrouncs Ha
PiBHOMIpPHIl TpaHITIHIN CHIOCTepeXXyBaHil OIiHII AAsT (piABTPOBaHMX PO3B’SI3KiB BiATIOBIAHOI KOH-
CepBaTVBHOI AMICKPETHOI CHCTeMH, ITIOKA3aHO piBHOMipHY KepOBaHiCTb MPOeKIIil po3B’sI3KiB Ha Ipo-
CTip, MOPOAKEHNIT PEIITOI0 BAACHNX (POPM.

Kntouosi cnosa i ¢ppasu: criocTepexxyBaHiCTh, KOHTPOABOBAHICTD, PIABTPYBaHHS.



