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STRICTLY DIAGONAL HOLOMORPHIC FUNCTIONS ON BANACH SPACES

In this paper we investigate the boundedness of holomorphic functionals on a Banach space

with a normalized basis {en} which have very special form f (x) = f (0) + ∑
∞
n=1 cnxn

n and which we

call strictly diagonal. We consider under which conditions strictly diagonal functions are entire and

uniformly continuous on every ball of a fixed radius.
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INTRODUCTION AND PRELIMINARIES

Let X be a separable complex Banach space with a normalized basis {en}∞
n=1. A holomor-

phic function f on an open ball B(0, r) of X centered at zero (of finite or infinite radius r) will

be called strictly diagonal with respect to the basis if it is of the form

f (x) = f (0) +
∞

∑
n=1

cnxn
n, x ∈ X, where x =

∞

∑
n=1

xnen. (1)

We can associate a formal power series with f in such way

γ(t) =
∞

∑
n=0

cntn, c0 = f (0), t ∈ C

and we will write γ = γ f and f = fγ if it is necessary. Note that the strictly diagonal function

f (x) = ∑
∞
n=1 xn

n is the well-known example [4, p. 169] of entire function on ℓp, 1 ≤ p < ∞ or

on c0 which is not of bounded type (the radius of boundedness at zero is equal to one). On

the other hand its associated series γ(t) well defines a holomorphic function only on the open

unit disk D1 ⊂ C. More examples of entire holomorphic functions which are not bounded on

all bounded sets can be found in [1, 2, 3].

The purpose of this paper is to examine properties of strictly diagonal holomorphic func-

tions in terms of associated power series and construct some new interesting examples of holo-

morphic functions on X.

Le us recall that a continuous function f : X → C is said to be holomorphic at a point a ∈ X

if it has power series representation

f (x) =
∞

∑
n=0

fn(x)
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in a neighborhood of a, where fn are continuous n-homogeneous polynomials. A function f is

entire if it is holomorphic at each point of X. The space of all entire functions on X is denoted

by H(X).

The radius of uniform convergence of a function f at a can be calculated by formula

ρa( f ) = (lim sup
n→∞

‖ fn‖
1
n )−1

and coincides with the radius of boundedness. In particular, each entire function is uniformly

bounded on the ball B(a, r) centered at a of radius r if r < ρa( f ) and unbounded on B(a, r) if

r > ρa( f ).

For details on holomorphic functions on Banach spaces we refer the reader to [4, 5, 7].

1 MAIN RESULTS

Throughout in this section f is a strictly diagonal function defined by (1).

Theorem 1. Let δ > 0 and

γ(t) =
∞

∑
n=0

cntn

converges in the open δ-disk Dδ = {t ∈ C : |t| < δ}. Then fγ ∈ H(X) and ρz( fγ) ≥ δ for every

z ∈ X.

Proof. For a given x ∈ X let n0 be a number such that |xn| ≤ r < δ for every n > n0. Then

| fγ(x)| ≤
∣∣∣

n0

∑
k=0

ckxk

∣∣∣+
∞

∑
k=n0+1

|ck||xk| ≤
∣∣∣

n0

∑
k=0

ckxk

∣∣∣+
∞

∑
k=n0+1

|ck|rk
< ∞.

So fγ is well-defined at any point of X. Clearly fγ is G-holomorphic and

ρ0( fγ) =
(

lim sup
n→∞

|cn|
1
n
)−1

= ρ0(γ) ≥ δ.

This, in particular, means that fγ is locally bounded at 0 and so it is holomorphic. Let z be a

fixed element in X. For any 0 < r < δ let m0 be a number such that |zn| < δ−r
2 ∀n > m0. Then

for every x ∈ X, ‖x‖ < r, we have

| fγ(x + z)| ≤
∣∣∣

m0

∑
k=0

ck(zk + xk)
k
∣∣∣+

∞

∑
m0+1

ck|(zk + xk)|k ≤
∣∣∣

m0

∑
k=0

ck(zk + xk)
k
∣∣∣+

∣∣∣γ
(δ − r

2
+ r

)∣∣∣.

Let us denote

c(z, r) :=
∣∣∣

m0

∑
k=0

ck(zk + xk)
k
∣∣∣+

∣∣∣γ
(δ − r

2
+ r

)∣∣∣.

Then for every z ∈ X and r < δ, fγ is bounded in B(z, r) by the constant c(z, r) which depends

only on z and r. That is, ρz( fγ) ≥ δ.

Definition 1.1. A basis {en}∞
n=1 is said to be boundedly complete if for every sequence of numbers

{bn}∞
n=1 such that sup ‖∑

m
n=1 bnen‖ < ∞ the series ∑

∞
n=1 bnen converges to a vector in X.
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Note that the standard basis in ℓp, 1 ≤ p < ∞, is boundedly complete while in c0 it is not.

Moreover if {en}∞
n=1 is not boundedly complete, then it contains a subsequence equivalent to

the standard basis in c0 (see [6]).

Definition 1.2. We say that K is the index of boundedness of {en}∞
n=1 if

‖x‖ = ‖
∞

∑
n=1

xnen‖ = δ > 0

implies that the cardinality of set {xk : |xk| = δ} does not exceed K.

Theorem 2. Let {en}∞
n=1 be a normalized basis of a Banach space X which has a finite index

of boundedness K and γ(t) = ∑
∞
n=0 cntn is holomorphic and bounded on the disk Dδ. Then

fγ ∈ H(X) and for every z ∈ X, fγ is bounded on B(z, δ).

Proof. From Theorem 1 it follows that fγ ∈ H(X). For a given x ∈ X, ‖x‖ < 1, we have

| fγ(x)| ≤
K

∑
n=0

cnδn + sup
|t|<δ

|γ(t)|.

So

sup
‖x‖<1

| fγ(x)| ≤
K

∑
n=0

cnδn + sup
|t|<δ

|γ(t)| < ∞

and fγ is bounded on B(0, δ). Using the same work like in Theorem 1 we can show that fγ is

bounded on B(z, δ) for every fixed z ∈ X.

Definition 1.3. Let us suppose that there are 0 < ε < 1 and positive integer Kε such that

‖x‖ = 1 implies card {xn : |xn| ≤ 1 − ε} ≤ Kε < ∞. Then we say that Kε is the index of ε-

boundedness of the basis {en}∞
n=1.

Clearly that if X has an index of ε-boundedness Kε for some ε > 0, then Kε = K.

Example 1. Let X =
⊕∞

k=1 ℓ
k
∞ (the ℓ1-sum). That is, for every

x =
∞

∑
k=1

k

∑
j=1

xk
j ek

j = (x1
1, x2

1, x2
2, x3

1, x3
2, x3

3, . . .), x ∈ X,

we have

‖x‖ =
∞

∑
k=1

max
1≤j≤k

|xk
j |.

Basis {ek
j }

∞, k
k=1,j=1 is boundedly complete. Indeed, let {bk

j }
∞, k
k=1,j=1 be a sequence of numbers

such that ∑
m
k=1 max1≤j≤k |bk

j | < c for every m and some c > 0. Then ∑
∞
k=1 max1≤j≤k |bk

j | con-

verges and so ∑ bk
j ek

j ∈ X. On the other hand for every K ∈ N we can pick

x0 = ek+1
1 + · · ·+ ek+1

k+1

with ‖x0‖ = 1 and so {ek
j }

∞, k
k=1,j=1 has no finite index of boundedness.
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Example 2. Let X be the ℓ1-sum of ℓn, X =
⊕∞

n=1 ℓ
n
n and {ek

j }
∞, k
k=1,j=1 be the natural basis. This

basis has the index of boundedness K = 1. Indeed, suppose ‖x‖ = 1 and for two different

coordinates |xk
j | = 1 and |xs

i | = 1. We have two cases:

1) if k = s, then ‖x‖ ≥ (|xk
j |k + |xk

i |k)
1
k > 1,

2) if k 6= s, then ‖x‖ ≥ 2.

This contradicts our assumption. So, just one coordinate may have the absolute value equals

one.

Let 0 < ε < 1 and Kε be a fixed positive integer. Let us find k0 ∈ N such that (1 − ε)k0 <
1

Kε+1 . Let m ≥ 2 max(k0, Kε + 1) and

x0 = (1 − ε)em
1 + . . . + (1 − ε)em

kε+1,

then

‖x0‖m = (Kε + 1)(1 − ε)m = (Kε + 1)(1 − ε)
2m
2

< (Kε + 1)(1 − ε)
m
2 (1 − ε)

m
2 < (Kε + 1)

1

(Kε + 1)
(1 − ε)

m
2 ,

that is,

‖x0‖ ≤ ((1 − ε)
m
2 )

1
m = (1 − ε)

1
2 .

It means that the index of ε-boundedness of the basis is greater than Kε. Since Kε is arbitrary,

the basis has no finite index of ε-boundedness.

Theorem 3. Let {en}∞
n=1 be a basis of a Banach space X which has an index of ε-boundedness

Kε for every 0 < ε < 1 and γ(t) = ∑
∞
n=0 cntn converges in the disk D1. Then fγ is uniformly

continuous on B(z, 1) for every z ∈ X.

Proof. Let us prove the statement for the case B(0, 1). The general case follows from there like in

Theorem 1. Note that γ(t) is uniformly continuous on the closed disk Dρ for every 0 < ρ < 1.

For a given 0 < ε < 1 let ω > 0 be such that

|γ(t1)− γ(t2)| < ε (2)

if only |t1 − t2| < δ for t1, t2 ∈ D1−ε/2. Let x, y ∈ X, ‖x‖ ≤ 1, ‖y‖ ≤ 1,

x =
∞

∑
n=1

xnen, y =
∞

∑
n=1

ynen.

Then there is a number m ≤ Kε + 1 such that for

x̃ =
∞

∑
n=m

xnen and ỹ =
∞

∑
n=m

ynen

‖x̃‖ < 1 − ε and ‖ỹ‖ < 1 − ε. Clearly that fγ is uniformly continuous on B(0, 1) if and only if

f c
γ :=

∞

∑
n=m

cnxn
n

is uniformly continuous on B(0, 1). If ‖x̃ − ỹ‖ < δ, then ‖xk − yk‖ < δ for k ≥ m. Let r =

supk≥m ‖xk − yk‖. Then from (2) we obtain

‖ fγ(x)− fγ(y)‖ = |
∞

∑
n=m

cn(xn
n − yn

n)| ≤
∞

∑
n=m

|cn(xn
n − yn

n)| ≤
∞

∑
n=m

cnrn
< ε.
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Example 3. Let γ(t) = ∑
∞
n=1 tn, then the entire function fγ is uniformly continuous on a unit

ball centered at any point in ℓp, 1 ≤ p < ∞. But it is not bounded in the unit ball in c0. Indeed

let xn = e1 + e2 + . . . + en ∈ c0, then f (xn) = n → ∞. By the same way it is possible to show

that if γ(t) is unbounded in D1 ⊂ C, then fγ(x) is unbounded in the unit ball of c0.

Proposition 1.1. fγ is bounded on B(z, r) ⊂ c0 for every z ∈ c0 if and only if γ(t) converges

absolutely on Dr.

Proof. If γ(t) converges absolutely on Dr, then it is easy that fγ is bounded on B(z, r) ⊂ c0 for

every z ∈ c0. To prove the converse statement without loss of the generality we assume that

r = 1. If γ(t) = ∑
∞
n=1 cntn does not converges absolutely on D1, then there are numbers bn,

|bn| = 1, such that ∑
∞
n=1 cnbn → ∞ as n → ∞.

Let xn = n
√

bn and xn = ∑
m
n=1 xnen. Clearly ‖xm‖c0 = 1 and fγ(xm) = ∑

m
n=1 cnbn = m → ∞

so fγ(x) is unbounded on B(0, 1).
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Дослiджено обмеженiсть голоморфних функцiй на банахових просторах з базисом {en},

якi мають дуже спецiальний вигляд f (x) = f (0) + ∑
∞
n=1 cnxn

n i якi ми називаємо строго дiаго-

нальними. Розглянуто при яких умовах строго дiагональнi функцiї будуть цiлими i рiвномiр-

но обмеженими на всiх кулях фiксованого радiуса.

Ключовi слова i фрази: голоморфнi функцiї на банахових просторах, базиси в банахових

просторах.


