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STRICTLY DIAGONAL HOLOMORPHIC FUNCTIONS ON BANACH SPACES

In this paper we investigate the boundedness of holomorphic functionals on a Banach space
with a normalized basis {e,} which have very special form f(x) = f(0) + Y_;_; cux) and which we
call strictly diagonal. We consider under which conditions strictly diagonal functions are entire and
uniformly continuous on every ball of a fixed radius.
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INTRODUCTION AND PRELIMINARIES

Let X be a separable complex Banach space with a normalized basis {e, }{> ;. A holomor-
phic function f on an open ball B(0, r) of X centered at zero (of finite or infinite radius r) will
be called strictly diagonal with respect to the basis if it is of the form

f(x) = f(0) + Z CnXyy, x € X, where X = Z Xpéy. (1)
n=1 n=1

We can associate a formal power series with f in such way

y(t) = i cnt”, co = f(0), teC
n=0

and we will write v = ¢ and f = f, if it is necessary. Note that the strictly diagonal function
f(x) = Yooy x; is the well-known example [4, p. 169] of entire function on £, 1 < p < oo or
on cg which is not of bounded type (the radius of boundedness at zero is equal to one). On
the other hand its associated series () well defines a holomorphic function only on the open
unit disk ID; C C. More examples of entire holomorphic functions which are not bounded on
all bounded sets can be found in [1, 2, 3].

The purpose of this paper is to examine properties of strictly diagonal holomorphic func-
tions in terms of associated power series and construct some new interesting examples of holo-
morphic functions on X.

Le us recall that a continuous function f: X — C is said to be holomorphic at a pointa € X
if it has power series representation

f(x) = fo ful)
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in a neighborhood of a, where f,, are continuous n-homogeneous polynomials. A function f is
entire if it is holomorphic at each point of X. The space of all entire functions on X is denoted
by H(X).

The radius of uniform convergence of a function f at a can be calculated by formula

pa(f) = (limsup | fu]| ") "

n—oo

and coincides with the radius of boundedness. In particular, each entire function is uniformly
bounded on the ball B(a,r) centered at a of radius r if ¥ < p,(f) and unbounded on B(a, r) if

r > pa(f).

For details on holomorphic functions on Banach spaces we refer the reader to [4, 5, 7].

1 MAIN RESULTS

Throughout in this section f is a strictly diagonal function defined by (1).
Theorem 1. Letd > 0 and
- Z Cntn
n=0

converges in the open 6-disk D5 = {t € C: |t| < }. Then f, € H(X) and p,(f,) > ¢ for every
z e X.

Proof. For a given x € X let ng be a number such that |x,| < r < ¢ for every n > ng. Then
g y

[f(x

|+ 2|mmvﬂ2qw+ Y el < o

k=ngp+1 k=ng+1
So f, is well-defined at any point of X. Clearly f,, is G-holomorphic and

po(fy) = (limsup |c,|7 ) - oo(7y) > 6.

n—oo

This, in particular, means that f, is locally bounded at 0 and so it is holomorphic. Let z be a
fixed element in X. For any 0 < r < 4 let mg be a number such that |z,| < %5 Vn > mg. Then
for every x € X, ||x|| < r, we have

_y

]fy(x+z\<)2ckzk+xk )4— ch] Zr + X \k<)2ck2k—|—xk )4—")/( +r)).
mo+1

Let us denote

c(z,r):= ’:éck(zk +xk)k’ + "y(% —{—r) ’

Then for every z € X and r < J, f, is bounded in B(z, r) by the constant c(z, r) which depends
only on z and r. That is, p,(f,) > 0. O

Definition 1.1. A basis {e, }?,_ is said to be boundedly complete if for every sequence of numbers
{bn}:, such thatsup || Y5 bye,|| < oo the series Y’ 1 bye, converges to a vector in X.
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Note that the standard basis in ¢ pr 1 < p < o0, is boundedly complete while in ¢y it is not.
Moreover if {e,}?>_; is not boundedly complete, then it contains a subsequence equivalent to
the standard basis in ¢y (see [6]).

Definition 1.2. We say that K is the index of boundedness of {e,, }%°_; if
[|x[] = || Z Xpen|| =6 >0
n=1
implies that the cardinality of set {xy: |x¢| = 6} does not exceed K.

Theorem 2. Let {e,}'° , be a normalized basis of a Banach space X which has a finite index
of boundedness K and (t) = Y_;._,cut" is holomorphic and bounded on the disk Ds. Then
fy € H(X) and for every z € X, f,, is bounded on B(z, 9).

Proof. From Theorem 1 it follows that f, € H(X). For a given x € X, |x|| < 1, we have

fr ()] < ch5"+sup v (B)].
n=0 |t|<é

So
sup [f,(x)] < ch5”+sup|7( )| < oo

lx]]<1 n=0 |t| <6
and f,, is bounded on B(0, §). Using the same work like in Theorem 1 we can show that f, is
bounded on B(z, ) for every fixed z € X. O

Definition 1.3. Let us suppose that there are 0 < ¢ < 1 and positive integer K. such that
|x|| = 1 implies card {x,: |x,| < 1 —¢} < K. < oo. Then we say that K, is the index of ¢-
boundedness of the basis {e; }_;

Clearly that if X has an index of e-boundedness K, for some ¢ > 0, then K, = K.

Example 1. Let X = ;2 ¢k (the ¢1-sum). That is, for every

o k
k k 1.2 .2 .3 .3 .3
X = Z Z xje; = (xq, X7, %5, X7, %5,%3,...), x € X,
k=1j=1

we have

x| = Z max |xf|.

1< i<k

Basis {ek}k /=1 is boundedly complete. Indeed, let {bk}k ,j—1 be a sequence of numbers
such that ) ;! ; maxj <<k \b] | < ¢ for every m and some ¢ > 0. Then } ;> , maxj <<k ]b]- | con-

verges and so ) b;‘e;‘ € X. On the other hand for every K € IN we can pick

=]

with ||xp|| = 1 and so {ek} _4 has no finite index of boundedness.
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Example 2. Let X be the {1-sum of £, X = @;,_; ¢} and {e;f}fz’ll;zl be the natural basis. This
basis has the index of boundedness K = 1. Indeed, suppose ||x|| = 1 and for two different
coordinates |x;‘| = 1and |x{| = 1. We have two cases:

1) ifk =, then ||x|| > (|x¥[* + |xk[F)E > 1,
2) ifk # s, then ||x|| > 2.

This contradicts our assumption. So, just one coordinate may have the absolute value equals
one.

Let0 < & < 1 and K be a fixed positive integer. Let us find kg € IN such that (1 —¢)k0 <
ﬁ. Letm > 2max(ko, K¢ + 1) and

xo=(1—¢)ef' +...+ (1 —¢e)eg 1,

Ixo]™ = (Ke +1)(1 —&)" = (Ke + 1)(1 —)
<(Ket (1 -e)F(1—-e)% < (Ke+1)

(Ke+1) (-9,

that is, ) )
[x0l| < ((1—g)2)m = (1—¢)2.

It means that the index of e-boundedness of the basis is greater than K. Since K, is arbitrary,
the basis has no finite index of e-boundedness.

Theorem 3. Let {e,,}7° ; be a basis of a Banach space X which has an index of e-boundedness
K¢ forevery 0 < ¢ < 1 and (t) = Y__ocat” converges in the disk IDy. Then f,, is uniformly
continuous on B(z,1) for every z € X.

Proof. Letus prove the statement for the case B(0, 1). The general case follows from there like in
Theorem 1. Note that -y (#) is uniformly continuous on the closed disk D, for every 0 < p < 1.
For a given 0 < ¢ < 1let w > 0 be such that

[v(t1) —v(2)] <e (2)
ifonly |t —ta] < dforty, to € Dy . Letx,y € X, ||x]| <1, |ly|| <1,

X = Z Xn€n, y - Z yn6n.
n=1 n=1
Then there is a number m < K, + 1 such that for
X = Z Xpen and Yy = Z Ynén
n=m n=m
|X]| <1—eand ||y]| < 1— e. Clearly that f, is uniformly continuous on B(0, 1) if and only if
fr = Y cux);
n=m

is uniformly continuous on B(0,1). If ||[X — y|| < J, then |[xx — yi|]| < J for k > m. Letr =
SUPy>,, [ Xk — Ykl Then from (2) we obtain

1,3) = £ =1 L enlal =yl < 3 len(xh— )| < Y- cur” <

n=m
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Example 3. Let y(t) = Y;°; t", then the entire function f. is uniformly continuous on a unit
ball centered at any pointin £,, 1 < p < co. But it is not bounded in the unit ball in cy. Indeed
letx" = e +ey+...4+en € o, then f(x") = n — co. By the same way it is possible to show
that if y(t) is unbounded inID; C C, then f,(x) is unbounded in the unit ball of c.

Proposition 1.1. f, is bounded on B(z,r) C ¢ for every z € ¢ if and only if y(t) converges
absolutely on D;.

Proof. If y(t) converges absolutely on ID,, then it is easy that f, is bounded on B(z,r) C cg for
every z € co. To prove the converse statement without loss of the generality we assume that
r = 1.1If y(t) = Y51 cut" does not converges absolutely on Dy, then there are numbers by,
|bn| =1, such that Y7 ; cyby — 00 asn — oo.

Let x, = /b, and x" = Y ; xue,. Clearly ||x™ ||, = 1 and £, (x™) = Y0 4 cuby = m — o0
so fy(x) is unbounded on B(0, 1). O
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AOCAiAXEeHO 06MeXeHICTh TOAOMOPdHIX (PYHKIIIN Ha 6aHAXOBUX IIpocTopax 3 6asmcoM {e,},
SIKi MAIOTh Ay>Xe crieriabrymt BUrAsIA f(x) = f(0) + Yoo q cpx? i sIKi MM Ha3MBAEMO CTPOTO Aiaro-
HaAbBHVMMI. PO3rASIHYTO IIPH SIKMX YMOBaX CTPOTO AlaroHaAbHI OyHKIIIT 6y AyTh HiAMM i piBHOMIp-
HO 0OMe>XeHMMM Ha BCiX KyAsiX ¢pikcoBaHOTO paaiyca.

Kontouosi cnosa i ¢ppasu: ToromopdpHi dyHKIII Ha 6aHaXOBMX MpOCTOpax, 6asucy B 6aHAXOBIMX
IIpocTopax.



