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ON PROPERTIES OF THE SOLUTIONS OF THE WEBER EQUATION

Growth, convexity and the I-index boundedness of the functions a(z) and B(z), such that a(z*)

and zf(z*) are linear independent solutions of the Weber equation w'’ — (% —v— 1w = 0 with
v = —1 are investigated.
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INTRODUCTION

Let .
f(z) = Zofnz” (1)

be an entire function, I — a positive continuous on [0, +o0) function. Function f is said to be
of bounded I-index [3], if there exists N € Z_ such thatforalln € Z; andz € C

@ 1)
A[z]) = {k!lk(]z\) : OSkSN}' @

The least such integer N is called I-index and is denoted by N(f,1). If G C C and there exists
N € Z, such that inequality (2) holds for all n € Z, and z € G, analytic in G function f is
said to be of bounded /-index on (or in) G, and /-index is denoted by N(f,[; G). Theorem 2.2
[3, p.33] implies that if f is an entire function, G is a bounded domain and | — a positive continuous
function, then f is of bounded I-index in G.

An analytic univalent in D = {z : |z| < 1} function (1) is said to be convex if f(D) is a
convex domain. Condition Re {1 +zf"(z)/f'(z)} > 0(z € D) is necessary and sufficient [1]
for a convexity of f. Every convex function is univalent in ID, and therefore f; # 0.

Differential equation
z? 1
w”—(——v——)w:O (3)

1
is said to be the Weber equation. Properties of the solutions of the Weber equation if v # —5

are investigated in [5] and the following theorem is proved.
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1
Theorem ([5]). If v # —5 the general solution of the equation (3) is of the form
w(z) = C19(2?) + Cozp(z?), and the functions ¢(z) and y(z) have the following properties:
1) N(g,1) < 1 withl(|z]) = %\
2) if (762 — \/388564) /343 < |2v + 1| < (762 + +/388564) /343, then ¢(z) is convex in DD,

and if (2350 — 1/3590164) /639 < |2v + 1| < (2350 + /3590164 ) /639 then y(z) is convex
inD;

2v 41| + ? and N(,1) < 1 with1(]z]) = %(yzwu +2);

3) if (1623 — 1/2430289) /364 < |2v + 1| < (1623 4 1/2430289) /364, then ¢(z) is close-to-
convex in D, and if (4915 — /22088809) /684 < [2v +1| < (4915 + /22088809 /684,
then 1 (z) is close-to-convex in ID;

4) forv € Rif (—7 —+/34)/2 < v < (=7 ++/34) /2 the function ¢(z) is close-to-convex in
D, and if (—11 —1/94) /2 < v < (=11 +/94) /2 the function 1(z) is close-to-convex in
D;

5) In M, (r) = (1 +o(1))£ and In My (r) = (1 +0(1))£ asr — oo, where
Ms(r) = max{|f(z)] : |z| =r}.

In this article we consider the case v = — % Then from (3) we have

2

w” — Zzw =0. (4)

Let us find the solution of the equation (4) in the form (1). Since

[ee) 1 (e.9)
Z (1’1 + 1)(1’1 + 2>fn+22n — Z Z fn_zz” = O,
n=0 n=2
s02f, =0,6f3 =0and 4(n +2)(n+1)fy42 = fu—2 if n > 2. We can see that for all n € N
fan—2 = fan—1 = 0, and f,,+4 depends on f,. Therefore the solution of the equation (4) is of the
form

w(z) = Cra(z*) + CozB(z*).
Let w(z) = a(z*). Then w'(z) = 4234/ (z%), W' (z) = 122%a’(z*) + 162°4” (z*), and, therefore,
the equation (4) in this case is of the form 162°a” (z*) 4+ 1222/ (z*) — Za(z*) = 0. After elemen-
tary transformations and replacement z* on z we will get

N

64za" (z) + 484’ (z) — a(z) = 0. (5)
If we suppose that w(z) = zB(z*), then, like before, we will get

64zB" (z) + 80p'(z) — B(z) = 0. (6)

We will find a recurrent formula for the coefficients of the function a(z) = Y a,z", which is
n=0
the solution of the equation (5). Since

e 0]

64 ) api1(n+1)nz" +48 Y ayq(n+1)2" — Y a2 =0,
n=1 n=0 n=0
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we equate coefficients at the same powers of the variable z and get 48a; — a9 = 0 and
(64n(n+1) +48(n+1))ay41 —an = 0if n > 1. Note, if ap = 0 then a(z) = 0. Thus we
put ap = 1. Then
0y
= 16n(£n1— n "=t 7
For the coefficients of the function f(z) = Z Brnz" which is the solution of the equation (6),

we have 8081 — Bop = 0 and 16(n + 1)(4n + S)ﬁnH Brn = 0if n > 1. If we put Bp = 1 then

o ﬁn—l
Pr=ten@n+1) "= ®

1 [-INDEX BOUNDEDNESS

Now we consider /-index boundedness of the functions «(z) and B(z). For this purpose we
use the following lemma.

Lemma 1 ([4]). If a function (1) is an analytic in the closed disc Dg = {z : |z| < R}, fo = 1,

and
o0

Y [fulR" <a(R) <1, )

n=1
1+a(R)
(1 —a(R))(R —[z[)”
Ifz € Dgg, 0 < ¢ <1,then R — |z| > (1 - )R and Lemma 1 implies N(f,[; Dgg) < 1 with

1+a(R) . L
= *7 < * < I*(r),
1(]z]) (1_€)R(1_Q(R)),because if N(f,1,;G) < N and I, (r) < I*(r), it is easy to prove

[3, p-23], that N(f,I*; G) < N. Therefore the next lemma is true.

then N(f,I; D) < 1 withl(|z|) =

Lemma 2. If an entire function (1) satisfies (9) and fy = 1, then for every { € (0, 1) and

R € (0, +0) the inequality N(f,1; Dgr) < 1 holds with(|z|) = = 51)—12(611(1—2)11(1%))

Using (7) we have
> R & o e q|RE 1|RF R & R k
g |RE = =+ Y oy [R" = == || R
k;l 48 kgz Z 16k(4k —1) 48 kgll 16(k 4 1)(4k + 3)
That is
> R ) v R
| |R* = .
,;( 16(k 4+ 1)(4k + 3) 48
Since R i ,if R < 224, then above equality implies
16(k+ 1)@k +3) = 224’ quatity tmp
R/48 14R
Rk < = =a(R).
k;l %R < T (Rya28) ~ ez —ar W)
s R R 672
Therefore, to use Lemma 2 it is necessary 18 + i < 1. Thatis R < T For such R by
672+ 11R

Lemma 2 we have N(a,[; Dgg) < 1 with I(|z])

(1—¢)R(672 —17R)’
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Now we consider I-index boundedness of the function a(z) in C \ IDgg. For this purpose we
use the fact that wa(z) satisfies differential equation (5), and therefore we have

o (z) = —irx "(z) + er( ). If |z] > ¢R, 1 =1/(¢R) and R < 672/17, then we obtain

4z 64z
" 3 |a! R !
2 < S R ) < e {05, o). o

Let us differentiate the equation (5) n times. Then we obtain
6420 "2 (2) + (64n + 48)a" ) (2) — al"(2) = 0.

Thus, if |z| > ¢R,1 =1/(¢R) and R < 672/17, then for all n > 1 we get

|a(1+2) (2)] o 64n+48 (D) (2)) n 1 (") (z)]
(n+2)I"2 = 64(n+2)|z|l (n+ 1)U~ 64(n+2)(n+1)|z[I2  nll"
(n+1) (n) (n+1) (n)
_ o488 )| R+ ) ROE] W@ @)
64(n+2) (n+ 1)U+ 64(n+2) nlln (n+ 1)U+l nlln
(11)

Inequalities (10) and (11) imply foralln € Z, and z € C \ Dgg

KO g { ), ),

n![n

thatis, N(«,I; C\ Dgr) < 1 withI(|z]) = giR Therefore, forall ¢ € (0, 1) and R € <0, %)
1 672 +11R
i lity N(«,!) <1 hol ith /
inequality N(«,1) < 1holds with I(|z]) = max { R’ T=0)R(672 —T7R) }
672 — 17R 1 672 +11R 1344 — 6R
If we put ¢ = 1344 — 6R’ then R~ A—0R(672—17R) ~ R(672—17R)" Therefore for
—6R
< i = . ini
allR € (0, 672/17) we have N(«,1) < 1 withI(]z|) R(672 —17R) The minimal value of the
last function on (0, 672/17) is w ifR=22411- E )
336 17
For the function B(z) using recurrent formulas (8) we have
. R ¢ = [BralRY R R k
RF=— 4 RF = + =+ RF.
k;'ﬁ” 80 k;zw Zl6k (4k+1) 80 ,;16(k+1)(4k+5)|ﬁk|
That is
o R ) . R
(R = —. (12)
k;( @5 ) PR =5
Since R < R so if R < 288, then from (12) we get
16(k + 1)(4k +5) — 288’ ’ 8
R/80 18R

R* = .
k;lﬁﬂ =~ 1—(R/288) 1440 — 5R
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440
Therefore to use lemma 2 it is necessary R < ———. For such R by lemma 2 we obtain

. 1440 + 13R
N(,B, [; ID@R) < 1with l(|Z|) = (1 — C)R(144O _ 23R)'

To investigate I-index boundedness of the function §(z) in C \ IDgg we use the fact that B(z)
1
is a solution of the equation (6), i.e. f”’(z) = —4—5213’(2) + @ﬁ(z) If |z] > ¢R, R < 48 and
I =1/(¢R) we have

B/ 518 @) 8)
i < S £l < max { BN, 152} 13)

Let us differentiate the equation (6) n times. Then we obtain

642"+ (2) 4 (64n + 80) "V (2) — B (2) = 0.
Therefore, if |z| > ¢R, R < 48 and | = 1/(¢R), then for all n € IN we get

B D) __64n+80  [pUTV(z)] 1 B (2)]

(n+2)1+2 = 64(n+2)|z|l (n+ 1)1+l * 64(n+2)(n+1)Jz|12  nll"
o 64480 [BV()| R/ (4 1) B )] { (\ﬁ(”“)(Z)! B (2)] } |

—64(n+2) (n+ DU 64(n42) nlln n+ 1)U+l pln
(14)

Inequalities (13) and (14) imply that for all n € Z and z € C \ Dgg inequality
B (2)] B'(2)]
<m
P et B VTR )]

1
holds, that is N(B,I; C \ Dg) < 1 with I(|z]) = iR’ Therefore, for all { € (0, 1) and

1 1440 + 13R
R 48) i lity N(B,1) <1 hol ith /
€ (0, 48) inequality N(B,1) < 1 holds with I(|z|) = max{(:R a C)R(1440—23R)}
1440 — 23R 1 1440 + 13R 2880 — 10R
ltweput( = Soey—ior’ TN 7R = = #)R(1440 — 23R) ~ R(1440 —23R)" | nerefore,
forall R € (0, 48) we have N(B,1) < 1withI(|z|]) = 2850 — 10R . The minimal value of the

R(1440 — 23R)

41 +2+/414 1
last function on (0, 48) is +720 if R =288 (1 - %) :

Therefore, the following proposition is true.

31+4-2+/238 and . 4142414

Proposition1. N(a,1) < 1withl(|z|) = 336 N(B, 1) <1withl(|z]) = 70

2  GEOMETRICAL PROPERTIES

We use following lemma to investigate convexity of the functions #(z) and B(z).

Lemma 3 ([2]). If Z n?|fu| < |f1l, then function (1) is convex in ID.

n=2
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Using recurrent formula (7) we get

+00 +00 +o00
2 2 lon1] 4 ntl  »
nlay| < 4lag| + ) n = + ) —— |y,
n;z " n; 16n(4n —1) 10752 H;Z l6n2(4n+3) "
that is .
= n+1 ’ 1
11— —mr—— | 1%y < =55 15
E( 16n2(4n+3)> jnl < 2688 (15)
. . . n+1 3 T
> - " >1- =
Since for n > 2 we have the inequality 1 T6r2(an +3) = 1 701’ ° (15) implies
= 1/2688 1
2
< L5 o=y
H;Z" ol < 7017708 < 38 = 1!

Applying a similar reasoning to the function B(z) we obtain

—ionZLB |<4|ﬁ2|+fn2 |ﬁn—1| _ 4 +"i°n—+1n2|ﬁ |
= = =" Ton(4n+1) 23040 ' = T6n2(dn+5) "V
that is .
< n+1 ) 1
1—-— < .
n;( 16n2(4n+5)> |Bnl < 2725
n+1 3
Sincel— — 7% >q_ >
N T ten2(dn +5) ~ 8327
= 1/5760 1
218 | < L7 < — — |B4].
n;z” Bl = 5207832 = 50 — 11!

Therefore, the next proposition is true.

Proposition 2. Functions «(z) and B(z) are convex in D.

3 GROWTH

The next proposition describes the growth of the functions «(z) and B(z).

Proposition 3. InM,(r) = (1+ 0(1))% and InMpg(r) = (1+ o(l)){ as r — oo, where
M (r) = max{[f(z)] : |z| =7}

Really, since

K1 Ko 2 1 1 1 1
pu— pu— pu— 1
T Ten(an—1) ~ 1emn! ,El 4k—1 64" (nl)? 4k—1)’
so for every e > 0 and for alln € IN

n
T K(1+e¢)

64 (n1)2 = "= Teqn(un)2 (16)

where K = K(e) is a positive constant.
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To obtain an asymptotic behavior of the function a(z) from inequality (16) we will consider

400 n
the function ¢(r) = ¥ d 5, where r > 0. Let pg(r) = max{r"/(n!)?> : n > 0} be the

n=0 (Vl!)
maximal term of the last series and vg(r) = max{n : "/(n!)> = pg(r)} be the central index.
Then vg(r) = n for n?> < r < (n+ 1)?, therefore vg(r) = (1+ 0(1))+/7 if r — +oo. Therefore

Inpg(r) = Inpg(1) + /1r %}—t(t)dt = (1+0(1))2Vr, r— oo,

and by the Borel’s theorem we get In Mg(r) = (14 0(1))Inpg(r) = (14 0(1))2/r, r — +o0.
From (16), in view of arbitrariness of ¢, we have

In My (r) = (1+0(1))2 é = (1+0(1))

ﬁ
o
NG

Similar we get asymptotical equality In Mg(r) = (1 + 0(1))T, r — +oo.

r — +o00.

4 MAIN THEOREM

Propositions 1-3 imply the following theorem.

Theorem 1. The general solution of (4) can be written in the form w(z) = Cya(z*) + CzB(z*),

where entire functions «(z) and B(z) are convex inID, N(a,1) < 1 withI(|z]) = W

41+ 2V/414 V7

and N(B,1) < 1 with I(|z]) = 0 also InM,(r) = (1+0(1>>T and
In Mg(r) = (1 —i—o(l))\/TF asr — oo, where M¢(r) = max{|f(z)| : |z| = r}.
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Aocaiaxeno BaactusocTi dpyrkuiit a(z) Ta B(z) Taxmx, wo a(z*) Ta zB(z*) e AiniitHo Hesarex-
. 2 .
HUMY po3B’si3kamu piBHsHHS Bebepa w'” — (5 —v — 3)w = Ompuv = —1, a came obmexenicTs

[-iHAeKCy, OIyKAICTD Ta MOXAMBE 3pOCTAHHS.

Kontouosi cnoea i ¢ppasu: 1iina pyHKIIiSI, 0OMeXeHiCTh [-iHAeKCY, 3pOCTaHHS, OmyKAa PYHKIIis,
piBHsHHS Bebepa.



