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GEOMETRY OF HYPERSURFACES OF A QUARTER SYMMETRIC NON METRIC
CONNECTION IN A QUASI-SASAKIAN MANIFOLD

The purpose of the paper is to study the notion of CR-submanifold and the existence of some
structures on a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian man-
ifold. We study the existence of a Kahler structure on M and the existence of a globally metric frame
f-structure in sence of Goldberg S.I., Yano K. [6]. We discuss the integrability of distributions on
M and geometry of their leaves. We have tries to relate this result with those before obtained by
Goldberg V., Rosca R. devoted to Sasakian manifold and conformal connections.
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INTRODUCTION

Let V be a linear connection in an n-dimensional differentiable manifold M. The torsion
tensor T and the curvature tensor R of V are respectively given by:

T(X,Y) = VxY — VyX — [X,Y],
R(X,Y)Z = VxVyZ — VyVxZ — Vix v Z.

The connection V is symmetric if the torsion tensor T vanishes, otherwise it is non-symmetric.
The connection V is metric if there is a Riemannian metric g in M such that V¢ = 0, otherwise
it is non-metric. It is well known that a linear connection is symmetric and metric if and only
if it is the Levi-Civita connection. In [5] S. Golab introduced the idea of a quarter-symmetric
connection. A linear connection is said to be a quarter-symmetric connection if its torsion
tensor T is of the form
T(X,Y) =u(Y)pX —u(X)gY,

where u is a 1-form and ¢ is a tensor field of type (1,1). Some properties of quarter symmetric
connections are studied in [7]. In [8, 9] S. Rahman studied Transversal hypersurfaces of almost
hyperbolic contact manifolds with a quarter symmetric non metric connections respectively.

The concept of CR-submanifold of a Kahlerian manifold has been defined by A. Bejancu [3].
Later A. Bejancu, N. Papaghiue [4] introduced and studied the notion of semi-invariant sub-
manifold of a Sasakian manifold. These submanifolds are closely related to CR-submanifolds
in a Kahlerian manifold. However the existence of the structure vector field implies some
important changes.
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The paper is organized as follows. In the first section we recall some results and formulae
for the later use. In the second section we prove the existence of a Kahler structure on M
and the existence of a globally metric frame f-structure in sence of S.I. Goldberg, S.I. Yano.
The third section is concerned with integrability of distributions on M and geometry of their
leaves. In section 4 the study of conformal connections with respect to the quarter symmetric
non metric connection in a quasi-Sasakian manifold is considered.

1 PRELIMINARIES

Let M be a real 21 + 1 dimensional differentiable manifold, endowed with an almost con-
tact metric structure (f, ¢, 7, g). Then we have

() fA=—1+y®8 (b)) =1 ()nof=0, (d) f(¢)=0,
(€) n(X) = 8(X,8), (f) g(fX, fY) = g(X,Y) = n(X)n(Y)

for any vector field X, Y tangent to M, where I is the identity on the tangent bundle I'M of M.
Throughout the paper, all manifolds and maps are differentiable of class C*. We denote by
F(M) the algebra of differentiable functions on M and by I'(E) the F(M) module of sections
of a vector bundle E over M.

The Niyembuis tensor field, denoted by Ny, with respect to the tensor field f, is given by

N (X, Y) = [fX, fY] + f2IX, Y] = fIfX, Y] + fIX, fY]

for all X,Y € T(TM) and the fundamental 2-form @ is given by ®(X,Y) = ¢(X, fY) for
all X,Y € I'(TM). The curvature tensor field of M, denoted by R with respect to the Levi-
Civita connection V, is defined by R(X,Y)Z = VxVyZ — VyVxZ — V[XﬂZ forall X,Y,Z €
I[(TM).

1)

Definition 1. (a) An almost contact metric manifold M (f,¢,7,g) is called normal if
N¢(X,Y) +2dn(X,Y) =0  forall X,Y € [(TM),

or equivalently ([1]) (V¢xf)Y = f(Vxf)Y —g((Vx{,Y) forall X,Y € T(TM).
(b) The normal almost contact metric manifold M is called cosympletic if d® = dn = 0.

Let M be an almost contact metric manifold M. According to [1] we say that M is a quasi-
Sasakian manifold if and only if ¢ is a Killing vector field and

(Vxf)Y =g(VixCY)E —n(Y)Vix¢  forall X, Y € T(TM). ()
Next we define a tensor field F of type (1,1) by FX = —Vx{ forall X € T(TM).
Lemma 1. Let M be a quasi-Sasakian manifold. Then for all X,Y € T'(TM) we have

(a) (Vef)X =0, (b) foF=F of_, (c) g(P_X,Y) +g9(X,FY) =0, 3)
(d) Fg =0, (e)noF=0, (f) (VxF)Y=R( X)Y.
The tensor field f defined on M is an f-structure in sense of Yano that is f> + f = 0.
Definition 2. The quasi-Sasakian manifold M is said to be of rank 2p + 1 iff

nA(dg)P £0 and (dn)P™ =o0.
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On other hand, a quarter symmetric non metric connection V on M is defined by

VxY = VxY +7(Y)pX. 4)

Using (4) in (2), we have
(Vx)Y =8(VixEY)E —n1(V)Vx¢ +n(Y)X —n(X)n(Y)g, (5)
Vxé=—-FX+ fX. (6)

Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian
manifold M and denote by N the unit vector field normal to M. Denote by the same symbol g
the induced tensor metric on M, by V the induced Levi-Civita connection on M and by TM*
the normal vector bundle to M. The Gauss and Weingarten formulas of hypersurfaces of a
quarter symmetric non metric connections are

(a) VxY = VxY +B(X,Y)N, (b) VxN =—-AX, (7)
where A is the shape operator with respect to the section N. It is known that for all X,Y &
I(TM)

B(X,Y) = g(AX,Y). (8)
Because the position of the structure vector field with respect to M is very important we
prove the following result.

Theorem 1. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. If the structure vector field ¢ is normal to M then M is cosympletic
manifold and M is totally geodesic immersed in M.

Proof. Because M is quasi-Sasakian manifold, then it is normal and d® = 0 ([2]). By direct
calculation using (7) (b), we infer for all X, Y € T(TM)

DX, Y) = HTxn) () = (T (0} = He(TxE¥) —g(Tve X)),
245(X,Y) = g(AY, X) — g(AX,Y) = 0.
From (7) (b) and (9) we deduce for all X,Y € T'(TM)

0= dy(X,¥) = 5 {(Txn) (¥) = (V) ()}

= J{8(VxE,Y) ~ g(VrE, X)} = g(¥, V&) = ~g(4X,Y) =0,

which proves that M is totally geodesic. From (10) we obtain Vx¢& = 0 for all X € T(TM). By
using (6), (3) (b) and (1) (d) from the above relation we state for all X € T(TM)

—f(Vx@) + fX = Vx¢, (11)
because fX € T'(TM) for all X € T(TM). Using (11) and the fact that ¢ is a not Killing vector
tield, we deduce dry # 0.

Next we consider only the hypersurface which are tangent to ¢. Denote by U = fN and
from (1) (f), we deduce g(U,U) = 1. Moreover, it is easy to see that U € T'(TM). Denote
by D+ = Span(U) the 1-dimensional distribution generated by U, and by D the orthogonal
complement of D @ (¢) in TM. It is easy to see that

fD=D, D-CTM', TM=D®D"a (), (12)

where @ denote the orthogonal direct sum. According with [1] from (12) we deduce that M is
a CR-submanifold of M. O

)

(10)
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Definition 3. A CR-submanifold M of a quasi-Sasakian manifold M is called CR-product if
both distributions D @ (&) and D+ are integrable and their leaves are totally geodesic subman-
ifold of M.

Denote by P the projection morphism of TM to D and using the decomposion in (10) we
deduce for all X € T(TM) that

X =PX+a(X)U+7n(X)E, fX = fPX+a(X)fU+n(fX)¢,
therefore fX = fPX — a(X)fU. Since
U=fN,  fU=FN=-N+yN)§=-N+g(N5 =

where a is a 1-form on M defined by a(X) = ¢(X,U), X € T(TM). From (12) using (1) (a) we
infer for all X € T(TM)

FX = tX — a(X)N, (13)
where ¢ is a tensor field defined by tX = fPX, X € I'(TM). It is easy to see that

(a)t€ =0, (b)tU =0. (14)

2 INDUCED STRUCTURES ON A HYPERSURFACE OF A QUARTER SYMMETRIC NON METRIC
CONNECTION IN A QUASI-SASAKIAN MANIFOLD

The purpose of this section is to study the existence of some induced structure on a hyper-
surface of a quarter symmetric non metric connection in a quasi-Sasakian manifold. Let M be
a hypersurface of a quarter symmetric non metric connection in a quasi-Sasakian manifold M.
From (1) (a), (13) and (14) we obtain t3 + t = 0, that is the tensor field t defines an f-structure
on M in sense of Yano [10]. Moreover, from (1) (a), (13), (14) we infer for all X € T(TM)

X = =X +a(X)U + n(X)E. (15)

Lemma 2. On a hypersurface of a quarter symmetric non metric connection M in a quasi-
Sasakian manifold M the tensor field t satisfies for all X,Y € T'(TM)

(a) g(tX, 1Y) = g(X,Y) —n(X)n(Y) —a(X)a(Y), (b) g(tX,Y) +g(X,tY) =0.  (16)
Proof. From (1) (f), and (13) we deduce for all X, Y € T'(TM)
8(X,Y) =n(X)n(Y) = g(fX, fY) = g(tX —a(X)N, Y —a(Y)N)
=q(tX, tY) —a(Y)g(tX,N) —a(X)g(N,tY)
+a(X)a(Y)g(N,N) = g(tX, tY) +a(X)a(Y),
X, 1Y) =g(X,Y) —n(X)n(Y) —a(X)a(Y),
X, Y) +g(X, tY) = g(fX +a(X)N,Y) + ¢(X, fY +a(Y)N)

(
(
= 8(fX,Y) +a(X)g(N,Y) +&(X, fY) +a(Y)g(X,N)
g(fX,Y) +g(X, fY) =0.
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Lemma 3. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then we have

(a) FU = fAC, (b) FN = A¢, (c) [U,g] =0. (17)
Proof. We take X = U and Y = ¢ in (2) f(Vy&) = —Vn¢ — U. Then using (1) (a), (6), (7) (b),
we deduce the assertion (a). The assertion (b) follows from (1) (a), (3) (b) and (7) (b) we derive

Vel = (Vef)N + fVeN = —fAZ = —FU = V¢,

[U,&] = Vu¢ — Vel =Vyug —Vul =0,
which prove assertion (c). 0

By using the decomposition TM = TM & TM+*, we deduce
FX=aX—-n(AX)N  forall X eT(TM),

where « is a tensor field of type (1, 1) on M, since ¢(FX,N) = —g(X,FN) = —g(X, A¢) =
—1(AX) for all X € T(TM). By using (5), (6), (7), (13) and (15) we obtain following theorem.

Theorem 2. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then the covariant derivative of a tensors t, a, 1j and « are given by

(a) (Vxt)Y =g(FX, fY)E—g(X,Y)E—a(Y)AX+B(X,Y)U+n(Y)[atX+X—n(AX)U],
(b) (Vxa)Y = B(X, £Y) +1(Y)n(AtX),
(€) (Vxm)Y =g(Y,Vx¢),
(d) (Vxa)Y = R(E, X)Y + B(X,Y)AE —n(AY)AX forall X,Y € T(TM)
respectively, where R is the curvature tensor field of M.

From (5), (6), (14) and (18) (a) we get the following.

(18)

Proposition 1. On a hypersurface of a quarter symmetric non metric connection M in a quasi-
Sasakian manifold M, we have for all X € T(TM)

(a) VxU = —tAX 4+ n(AtX)¢, (b) B(X,U) = a(AX). (19)
Theorem 3. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-

Sasakian manifold M. The tensor field t is a parallel with respect to the Levi Civita connection
V on M iff for all X € T(TM)

(a) AX =n(AX){ —a(X){+a(AX)U, (b) FX=fX—n(AX)N +a(X)N. (20)
Proof. Suppose that the tensor field f is parallel with respect to V, that is Vt = 0. By using (2)
(a), we deduce forall X,Y € T(TM)
n(Y)[atX + X —n(AX)U] —a(Y)AX + g(FX, fY){ + B(X,Y)U — g(X,Y)¢ = 0. (21)
Take Y = U in (21) and using (7) (b), (8), (19) (b) we infer
n(U)[atX + X —n(AX)U] —a(U)AX + g(FX, fU)¢ — g(X, U)¢ + B(X, U)U =0,
I =0, aU)=1, g(X,N)=0,
— AX +g(FX, fu)¢ —g(X, U) +a(AX)U =0,
AX = ¢(FX, —N)& — a(X)& + a(AX)U
= 8(X, FN)¢ —a(X)¢ +a(AX)U = g(X, AG)¢ — a(X)¢ +a(AX)U,
AX = n(AX)¢ —a(X)¢ +a(AX)U
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and the assertion (20) (a) is proved. NextletY = fZ, Z € T(D) in (21) and using (1) (f), (3) (b),
(17), (20) (a), we deduce for all X € T(TM)

¢(X,FZ) =0 = FX = fX — n(AX)N + a(X)N.

The proof is complete. U

Proposition 2. Let M be a hypersurface of a quarter symmetric non metric connection in a
quasi-Sasakian manifold M. Then we have the assertions for all X,Y € T(TM)

(ll) (Vxll>Y =0 VxU =0, (b) (in])y =0& ng =0.

Proof. Let X,Y € T(TM). Using (8), (16) (b), (18) (b) and (19) (a) we obtain

G(VxU,Y) = g(—tAX 4+ (AtX)E,Y) = g(—tAX,Y) + (AtX)g(Z,Y)
= g(AX, tY) + n(AtX)n(Y) = (Vxa)Y,

which proves assertion (a). The assertion (b) is consequence of the fact that ¢ is not a killing
vector field. 0

According to Theorem 2 in [6], the tensor field f = t + 7 ® U — a ® ¢ defines an almost
complex structure on M. Moreover, from Proposition 2 we deduce the following assertion.

Theorem 4. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. If the tensor fields t, a, 1 are parallel with respect to the connection V,
then f defines a Kahler structure on M.

3 INTEGRABILITY OF DISTRIBUTIONS ON A HYPERSURFACE OF A QUARTER SYMMETRIC NON
METRIC CONNECTION IN A QUASI-SASAKIAN MANIFOLD M

In this section we establish conditions for the integrability of all distributions on a hypersur-
face of a quarter symmetric non metric connection M in a quasi-Sasakian manifold M. From
Lemma 3 we obtain.

Corollary 1. On a hypersurface of a quarter symmetric non metric connection M of a quasi-
Sasakian manifold M there exists a 2-dimensional foliation determined by the integral distri-
bution D+ @ (¢).

Theorem 5. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then we have the following.

(a) A leaf of D+ @ () is totally geodesic submanifold of M if and only if

(1) AU =a(AU)U +75(AU){ —¢ and (2) FN = a(FN)U.

(b) A leaf of D+ & () is totally geodesic submanifold of M if and only if for all X € T'(D)
(1) AU=0 and (2)a(FX)=a(FN)—1=0.
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Proof. (a) Let M* be a leaf of integrable distribution D+ @ (&) and h* be the second fundamen-
tal form of the immersion M* — M. By using (1) (f) and (7) (b) we get for all X € T'(TM)

09 (U, 1), X) = g(Tull, X) = —g(N, (V)X — (VuN, £X) o)
=0—-g(—AU, fX) = g(AU, fX) = g(AU, fX)
and for all X € T(TM)
g(h*(U,¢), X) = g(Vug, X) = g(~=FU + U, X) = g(FN, fX) +a(X), (23)

because g(FU,N) = 0 and f¢ = 0 the assertion (a) follows from (22) and (23).
(b) Let iy be the second fundamental form of the immersion M* — M. It is easy to see that

(X, Y) =h(X,Y)+B(X,Y)N  forall X,Y €T(D*a (&)). (24)
From (6) and (8) we deduce

(hl(ur U), N) = g(vuur N) = ll(AU), (25)
g(hl(u/C>IN> :8(vu§rN) :a(FN)_l' (26)
The assertion (b) follows from (23)—(26). O

Theorem 6. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then

(a) the distribution D & (§) is integrable iff for all X,Y € T(D)
S(AfX + fAX,Y) =0, (27)

(b) the distribution D is integrable iff (27) holds and for all X € T'(D)
FX =n(AtX)U — n(AX)N, (equivalent with FD 1 D),

(c) the distribution D @ D is integrable iff FX = 0 for all X € T'(D).
Proof. Let X,Y € T'(D). Since V is a torsion free and ¢ is a Killing vector field, we infer
g([X, 2l U) = g(VxZ,U) — g(VeX,U) = g(VxE, U) +g(Vui, X) =0. (28)
Using (1) (a), (7) (a) we deduce for all X, Y € T'(D)
g([X, Y], U) = g(va - VYX, U) = g(va - va,fN)
=g(VyfX —VxfY,N) = —¢(AfX + fAX,Y).
Next by using (4), (5) (d) and the fact that V is a metric connection we get for all X, Y € T'(D)
8([X,Y],8) = g(VxY,§) —g(VyX,§) = 28(FX — fX,Y) = 2¢(FX,Y) — 28(fX,Y).  (30)

The assertion (a) follows from (28), (29) and assertion (b) follows from (28)—(30). Using (6) and
(3) we obtain for all X € I'(D)

(29)

Taking into account that for all X € I'(D)
8(FX,N) = g(FfX, fN) = g(FfX,U), (32)

the assertion (c) follows from (30) and (31). O
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Theorem 7. Let M be a hypersurface of a quarter symmetric non metric connection in a quasi-
Sasakian manifold M. Then we have

(a) the distribution D is integrable and its leaves are totally geodesic immersed in M if and
only if forall X € T(D)

FD 1 D and AX =a(AX)U —n(AX)¢, (33)

(b) the distribution D & (¢) is integrable and its leaves are totally geodesic immersed in if
and only if for X € T'(D) takes place AX = a(AX)U and FU = 0,

(c) the distribution D @ D+ is integrable and its leaves are totally geodesic immersed in M
if and only if for X € T (D) takes place FX = 0.

Proof. Let M] be a leaf of integrable distribution D and hj the second fundamental form of
immersion Mj — M. Then by direct calculation we infer

g(h(X,Y),U) = g(VxY,U) = —g(Y, VxU) = —g(AX, tY) (34)
and forall X,Y € I'(D)
g(h(X,Y),8) = g(VxY, ) =g(FX,Y) = g(fX,Y). (35)

Now suppose M is a totally submanifold of M. Then (33) follows from (34) and (35). Con-
versely suppose that (33) is true. Then using the assertion (b) in Theorem 6 it is easy to see that
the distribution D is integrable. Next the proof follows by using (34) and (35). Next, suppose
that the distribution D & (&) is integrable and its leaves are totally geodesic submanifolds of
M. Let M be a leaf of D @ (&) and h; the second fundamental form of immersion M; — M.
By direct calculations, using (6), (7) (b), (16) (b) and (19) (c), we deduce that for all X,Y € T'(D)

g(m(X,Y),U) = g(VxY,U) = —g(AX, tY), (36)
and forall X € T'(D)
§(h(X,¢),U) = g(Vxi, U) = g(—FU + fU,X) = g(FU, X). (37)

Then the assertion (b) follows from (32), (36), (37) and the assertion (a) of Theorem 6. Next let
M be a leaf of the integrable distribution D @ D+ and h; is the second fundamental form of
the immersion M; — M. By direct calculation for all X € T(D),Y € I'(D @ D) we get

g (X,Y),8) = g(FX,Y) — g(fX,Y). (38)
The assertion (c) follows from (3) (c), (32) and (38). O

4 CONTACT CONFORMAL CONNECTION ON A HYPERSURFACE OF A QUARTER SYMMETRIC
NON METRIC CONNECTION IN A QUASI-SASAKIAN MANIFOLD M

Let the conformal change of the metric tensor § which induces a new metric tensor, given
by 3(X,Y) = e?§(X,Y) with regard to this metric, take an affine connection, which satisfies

Vx(Y, Z) = Vx{eg(Y, 2)} = & p(X)n(¥)y(2), (39)
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where p is a scalar point function. The torsion tensor of the connection V satisfies
T(X,Y) = -23(fX,Y)U =S(X,Y) - 5(Y, X), (40)
where U is a vector field. Let
VxY = VxY +5(X,Y), (41)
where S is a tensor of type (1,2). Using (39), (40), (41), we have
VxY = VxY + p(X){Y —7(Y)&} + p(){X - (X)Z}
—8UX, V)P +u(X)fY +u(Y)fX = g(fX, V)U,
where g(P, X) = p(X), g(QX, P) = p(fX) = —q(X), §(Q, X) = 9(X), g(U, X) = u(X).
(VX)) = (VxHY) +{X =n(X)Gp(fY) = p()fX +3(FX,Y)p +§(FX, fY)fP
Fu(fY)fX +u(V{X = n(X)8} = g(fX, YU +E(fX,Y)fU =0.

Using (5), the relation becomes

§(Vx8,Y)E —n(Y)Vx& + (V)X = n(X)n(Y)E — p(Y)fX
H{X=n(X)3p(fY) +3(fXV)p +3(f X, fY)fP +u(fY)fX
+u(V{X = (X)} —g(fX, U +3(fX,Y)fU =0.

(42)

Contracting with respect to X,
20 (Y) +2mp(FY) ~ 2p(fY) + 2mu(Y) ~ 2u(¥) + 29 (U)y(¥) =0,
2(m — 1)p(fY) +20m — 1yu(Y) +29(¥) s + y(U)} = 0.
If weputy(U) = —1 =u(g), thenu(Y) = g(Y) — n(Y). Thus (42) takes the form
XY = V¥ Y — (N2} p(X) + {X = (X p(Y) — (X, FY)P
+{a(X) = (X)}Y +{4(Y) =n(V)}fX = (fX,Y)(Q - ).
Then Vx& = 0 = Vx& + {X — n(X)&}p(&) — fX. Using (6) in this equation, we have
—FX+ fX+ VxZ +{X = n(X)¢}p(¢) - fX =0,
which implies that FX = {X — n(X){}p(E).

(43)

Proposition 3. On a hypersurface of a quarter symmetric non metric connection M in a quasi-
Sasakian manifold M the affine connection V which satisfies (40), is given by (43) with the

conditionsu(¢) = -1 =n(U), FX = {X —n(X)&}p(d).
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Meroro wi€i cTarTi € BuBYeHHs MOHATTSI CR-IIiAMHOTOBMAIB Ta iCHYBaHHS AeSIKMX CTPYKTYp Ha
rineproBepxHi UeTBEPTMHHO CUMETPMYHOTO HeMeTPUUHOTO 3B’3KY B KBa3i CacaksTHOBOMY MHOTO-
BuAL. My AocAiaXyeMo icHyBaHHS cTpykTypu Kaxaepa Ha M Ta icHyBaHHSI TAOGaABHO METPUUHOL
KOHCTpyKIi f-cTpykTypm y ceHci T'oapapepra C.1., SIHo K. [6]. O6roBoproeTsest iHTErpoBaHiCTb po3-
moAiAiB Ha M i reomeTpist ixHiX AmcTkiB. OmicaHoO cIpo6yt TOB’I3aTH 11l pe3yAbTaT 3 OTPMMAHIMU
panimre pesyabraTamu I'oababepra B., Pocka P., siki npucsstaeni mHorosuay CacaxsiHa Ta KOHPOPM-
HUM 3B’ sI3KaM.

Kntouosi croea i ppasu: CR-miamHOrOBUA, KBasi CacaksTHOBMIE MHOTOBMA, YeTBEPTUHHO CUMETPU-
YHMII HeMeTPYYHIIA 3B’ 130K, YMOBM iHTeTrPOBAaHOCTI PO3IOALAIB.



