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ON THE MULTIPLICATIVE ORDER OF ELEMENTS IN WIEDEMANN’S TOWERS OF

FINITE FIELDS

We consider recursive binary finite field extensions Ei+1 = Ei(xi+1), i ≥ −1, defined by

D. Wiedemann. The main object of the paper is to give some proper divisors of the Fermat numbers

Ni that are not equal to the multiplicative order O(xi).
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INTRODUCTION

High order elements are often needed in several applications that use finite fields [8, 9].

Ideally we want to have a possibility to obtain a primitive element for any finite field. However,

if we have no the factorization of the order of finite field multiplicative group, it is not known

how to reach the goal. That is why one considers less ambitious question: to find an element

with provable high order. It is sufficient in this case to obtain a lower bound on the order.

The problem is considered both for general and for special finite fields. We use Fq to denote

finite field with q elements. Gao [5] gave an algorithm constructing high order elements for

many (conjecturally all) general extensions Fqn of finite field Fq with lower bound on the order

exp(Ω((log m)2/ log log m)). Voloch [13] proposed a method which constructs an element of

order at least exp((log m)2) in finite fields from elliptic curves.

For special finite fields, it is possible to construct elements which can be proved to have

much higher orders. Extensions connected with a notion of Gauss period are considered in

[1, 11]. The lower bound on the order equals to exp(Ω(
√

m)). Extensions based on Kummer

polynomials are of the form Fq[x]/(xm − a) [2, 3]. It is shown in [3] how to construct high order

elements in such extensions with the condition q ≡ 1(mod m). The lower bound exp(Ω(m)) is

obtained in this case. The condition q ≡ 1(mod m) for extensions based on Kummer polyno-

mials is removed in [12].

Another less ambitious, but supposedly more important question, is to find primitive ele-

ments for a class of special finite fields. A polynomial algorithm that finds a primitive element

in finite field of small characteristic is described in [6]. However, the algorithm relies on two

unproved assumptions and is not supported by any computational example. Our paper can

be considered as a step towards this direction. We give some restrictions and as a consequence
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a lower bound on multiplicative order of some elements in binary recursive extensions of fi-

nite fields defined by Wiedemann [14]. The paper concerns with the open question posed by

Wiedemann [10, problem 28]. Voloch [13] gave the first nontrivial estimate for the order of

elements in this construction, namely exp(22i
δ), where δ is an absolute constant. However, the

constant is unknown. Our bound does not depend on any unknown constant.

More precisely, we consider the following finite fields defined by Wiedemann that are con-

structed recursively:

x−1 = 1, E−1 = F2(x−1) = F2,

for i ≥ −1, Ei+1 = Ei(xi+1), where xi+1 satisfies the equation

x2
i+1 + xi+1xi + 1 = 0. (1)

So, we obtain the following tower of characteristic two finite fields:

F2 ⊂ E0 = F2(x0) ⊂ E1 = E0(x1) ⊂ . . .

For comparison, the following finite fields are defined by Conway [14]:

c−1 = 1, L−1 = F2(c−1) = F2,

for i ≥ −1, Li+1 = Li(ci+1), where ci+1 satisfies the equation

c2
i+1 + ci+1 +

i

∏
j=−1

cj = 0.

In this case, the following tower of finite fields of characteristic two arises:

L−1 = F2(c−1) = F2 ⊂ L0 = F2(c0) ⊂ L1 = L0(c1) ⊂ . . .

From a point of view of applications such construction is very attractive, since we can perform

operations with finite field elements recursively, and therefore effectively [7].

Note that the number of elements of the multiplicative group E∗
i (i ≥ 0), that is the set

of non-zero elements of the field Ei, equals to 22i+1 − 1. If to denote the Fermat numbers

Nj = 22j
+ 1 (j ≥ 0), then the cardinality of E∗

i (i ≥ 0) is equal to 22i+1 − 1 = ∏
i
j=0 Nj. For

example, |E∗
0 | = 221 − 1 = 3, |E∗

1 | = 222 − 1 = 15 = 3 · 5, |E∗
2 | = 223 − 1 = 255 = 3 · 5 · 17.

1 PRELIMINARIES

We give below in Lemmas 1–9 auxiliary results for this paper.

Lemma 1 ([5]). For j ≥ 1 the following equality holds Nj = ∏
j−1
k=0 Nk + 2.

As a consequence of Lemma 1, we have the following lemma.

Lemma 2. Numbers Nj (j ≥ 0) are pair-wise coprime.

Lemma 3 ([14]). For i ≥ 0, the following equality holds: (xi)
Ni = 1.

The multiplicative order of a field element xi is defined to be the smallest nonnegative

integer Ni such that (xi)
Ni = 1. According to Lagrange theorem for finite groups, the above

result implies that the order of xi divides Ni. In the case where Ni is prime, xi has order that

precisely equals to Ni. The open question posed by Wiedemann [10, problem 28] is as follows:

does the multiplicative order O(xi) of the element xi equal to Ni. In any case, the order of xi

divides Ni.
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Lemma 4. Let ur = ∏
r
i=0 xi for r = 0, 1 . . . . The multiplicative order of element ur equals to

O(ur) = ∏
r
i=0 O(xi).

Proof. Since the Fermat numbers are pair-wise coprime (see Lemma 2), the order of ur =

∏
r
i=0 xi is the product of the orders of xi, 0 ≤ i ≤ r. The number of elements of the multi-

plicative group E∗
i (i = 0, 1, . . . ) is equal to ∏

i
j=0 Nj. As a corollary of Lemma 3 we have that

the group E∗
i (i = 0, 1, . . . ) is an internal direct product of subgroups with Nj(j = 0, . . . , i)

elements. The element xi belongs to the subgroup with the order Ni.

We say that an element of a finite field is primitive if its order is the same as the number

of nonzero field elements. If the order of xi is, in fact, Ni for 0 ≤ i ≤ r, then ur = ∏
r
i=0 xi

is a primitive element in Er, because 22i+1 − 1 = ∏
i
j=0 Nj. So, the given before Wiedemann’s

question can be reformulated as follows: is the element ur = ∏
r
i=0 xi primitive.

Lemma 5. For j ≥ 2, a divisor α > 1 of the number Nj is of the form α = l · 2j+2 + 1, where l is

a positive integer.

Proof. The result obtained by Euler and Lucas (see [4, Theorem 1.3.5]) states: for j ≥ 2, a prime

divisor of the number Nj is of the form l · 2j+2 + 1, where l is a positive integer. Clearly a

product of two numbers of the specified form is a number of the same form. Hence, the result

follows.

Lemma 6. Let K be a finite field of characteristic two and x, y ∈ K. If

y2 = yx + 1, (2)

then

y2k
= yx2k−1 +

k

∑
j=1

x2k−2j
(3)

for any positive integer k.

Proof. By induction on k. For k = 1 we obtain the equality (2).

Suppose the equality (2) holds for some positive integer k. Then

y2k+1
=
(

y2k
)2

=

(

yx2k−1 +
k

∑
j=1

x2k−2j

)2

= y2x2k+1−2 +
k

∑
j=1

x2k+1−2j+1
.

Taking into account (2), we have

y2k+1
= yx2k+1−1 +

k+1

∑
j=1

x2k+1−2j
,

that is the equality (3) is true for k + 1 as well.

Lemma 7. The multiplicative order O(xi) = Ni for 0 ≤ i ≤ 11.

Proof. For 0 ≤ i ≤ 4 Fermat numbers are prime [4]: N0 = 3, N1 = 5, N2 = 17, N3 = 257,

N4 = 65537. Therefore clearly for these numbers, as a consequence of Lemma 3, the order of

the element xi coincides with the correspondent Fermat number, that is O(xi) = Ni.

The rest of the proof uses computer calculations. We perform calculations of order of the

element xi for 5 ≤ i ≤ 11. In this case Fermat numbers are completely factored into primes [5].
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Using the mentioned factorizations, we calculate xi in the power Ni/q for any prime divisor

q of the number Ni. Really, if an element in the power Ni/q is not equal to one, then the element

in the power of any divisor of Ni/q is also not equal to one. As a result we obtain that for

5 ≤ i ≤ 11 the order of element xi is not less than Ni, namely precisely equals to Ni.

Lemma 8. For i ≥ 0 the inverse element to the element xi equals to (xi)
−1 = xi + xi−1.

Proof. Based on the given in the introduction recursive equation (1), that defines the Wiede-

mann’s tower, we have xi(xi + xi−1) = (xi)
2 + xixi−1 = 1. Hence, the element xi is the inverse

to the element xi + xi−1.

Lemma 9. The following equalities hold for i ≥ 1:

x2
i = xixi−1 + 1, (4)

x3
i
= xi−1(xi−2xi + 1), (5)

x5
i = xi−1[(x2

i−2 + 1)xi−1xi + xi−2xi−1 + 1]. (6)

Proof. The equality (4) follows directly from (1). Using (4) for x2
i consequently two times, we

obtain

x3
i = x2

i · xi = xi−1x2
i + xi = x2

i−1xi + xi−1 + xi.

Substituting now the value of x2
i−1 from (4), leads to (5). Using (4) and (5), we have

x5
i = x3

i · x2
i = xi−1(xi−2xi + 1)(xi−1xi + 1)= xi−1(xi−2xi−1x2

i + xi−2xi + xi−1xi + 1)

= xi−1(x2
i−1xi−2xi + xi−2xi−1 + xi−2xi + xi−1xi + 1).

Substituting now the value of x2
i−1 from (4), gives (6).

2 MAIN RESULTS

We give in this section in Theorems 1–3 and Corollary main results of this paper.

Theorem 1. The order O(xi) (i ≥ 0) cannot be a divisor of a number of the form 2k + 1, where

k is a positive integer and k < 2i.

Proof. By induction on i. For 0 ≤ i ≤ 11 it is true according to Lemma 7. Let the assertion

holds for numbers from 12 to i − 1.

Show by the way of contradiction that the assertion holds for i as welll. Assume that O(xi)

divides 2k + 1, where k < 2i. Then (xi)
2k+1 = 1 and Lemma 8 gives

(xi)
2k
= (xi)

−1 = xi + xi−1. (7)

On the other hand, putting in (3) y = xi, x = xi−1, we have

(xi)
2k
= xi(xi−1)

2k−1 +
k

∑
j=1

(xi−1)
2k−2j

. (8)

Comparing coefficients near xi in (7) and (8), we obtain (xi−1)
2k−1 = 1. Hence, O(xi−1)

divides 2k − 1. At the same time, by Lemma 3, O(xi−1) is a divisor of 22i−1
+ 1. Then O(xi−1)

divides the sum of numbers 22i−1
+ 1 and 2k − 1, that is equal to S = 22i−1

+ 2k. Consider the

following three possible cases.
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1) If k = 2i−1, then S = 22i−1
+ 2k = 22i−1+1. In this case O(xi−1) equals to a power of two.

This contradicts to the fact that O(xi−1) must divide 22i−1
+ 1.

2) If k < 2i−1, then S = 2k(22i−1−k + 1). As 2k is coprime with 22i−1
+ 1, the order O(xi−1)

divides 22i−1−k + 1. Since k ≥ 1, the inequality 2i−1 − k < 2i−1 holds, a contradiction with the

induction hypothesis.

3) If k > 2i−1, then S = 22i−1
(2k−2i−1

+ 1). As 22i−1
is coprime with 2k−2i−1

+ 1, the order

O(xi−1) is a divisor of 2k−2i−1
+ 1. Since k < 2i, the inequality k − 2i−1

< 2i−1 is true, a

contradiction with the induction hypothesis.

Therefore, we obtain a contradiction in all three possible cases, what shows that the asser-

tion also holds for i.

Theorem 2. The order O(xi) (i ≥ 0) cannot be a divisor of a number of the form s · 2k + 1,

where s = 3, 5 and k is a non negative integer.

Proof. By the way of contradiction. If O(xi) is a divisor of a number of the form s · 2k + 1, then

(xi)
s·2k+1 = 1 and clearly

(xi)
s·2k

= (xi)
−1. (9)

Denote t = 2i − k. Then 22i
= 2t · 2k. Powering left and right side of the equation (9) to 2t and

taking into account (xi)
22i

= (xi)
−1, we obtain

(xi)
2t
= (xi)

s.

Consider the case s = 3. According to Lemma 6

(xi)
2t
= xi(xi−1)

2t−1 +
t

∑
j=1

(xi−1)
2t−2j

. (10)

Comparing coefficients near xi on the right side of (10) and (5), we have

(xi−1)
2t−2 = xi−2.

Since xi−2 6= 1 and, by lemma 2, Fermat numbers are coprime, we have the trivial intersection

of cyclic subgroups 〈xi−1〉
⋂ 〈xi−2〉 = 1, a contradiction. As a consequence, O(xi) (i ≥ 0)

cannot be a divisor of a number of the form 3 · 2k + 1, where k is a non negative integer.

Consider now the case s = 5. Comparing coefficients near xi on the right side of (10) and

(6), we obtain

(xi−1)
2t−3 = (xi−2)

2 + 1.

Since (xi−2)
2 + 1 = xi−2xi−3 6= 0, we have (xi−2)

2 + 1 ∈ [F2(xi−2)]
∗. Note that (xi−2)

2 + 1 6=
1, because (xi−2)

2 6= 0. The fact: Ni−1 is coprime with Ni−2Ni−3 (see lemma 2), leads to

〈xi−1〉
⋂

[F2(xi−2)]
∗ 6= 1, a contradiction. Therefore, O(xi) (i ≥ 0) cannot be a divisor of a

number of the form 5 · 2k + 1, where k is a non negative integer.

Theorem 3. The order of element xi equals to Ni for 0 ≤ i ≤ 11 and is at least 7 · 2i+2 + 1 for

i ≥ 12.

Proof. By Lemma 7 O(xi) = Ni holds for 0 ≤ i ≤ 11. Show now that O(xi) ≥ 7 · 2i+2 + 1 for

i ≥ 12. If (xi)
ni = 1, then, by the Lagrange theorem for finite groups, ni divides Ni. According

to Lemma 3, ni = s · 2i+2 + 1, where s is a positive integer. By Theorem 1, s can not equal to 1, 2

or 4, and by Theorem 2 s can not equal to 3, 5 or 6, that is s ≥ 7. Hence, the result follows.
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Corollary. The order of element ur = ∏
r
i=0 xi equals to ∏

r
i=0 Ni for 0 ≤ r ≤ 11 and is at least

∏
11
i=0 Ni · ∏

r
i=12(7 · 2i+2 + 1) for r ≥ 12.

Proof. According to Lemma 4, we have the equality O(ur) = ∏
r
i=0 O(xi). Applying now Theo-

rem 3, we obtain given in the formulation of the corollary bounds on the order.
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