ISSN 2075-9827 e-ISSN 2313-0210 Carpathian Math. Publ. 2015, 7 (2), 209–214

doi:10.15330/cmp.7.2.209-214

MOSTOVA M.R., ZABOLOTSKYJ M.V.

CONVERGENCE IN $L^p[0,2\pi]$ -METRIC OF LOGARITHMIC DERIVATIVE AND ANGULAR v-DENSITY FOR ZEROS OF ENTIRE FUNCTION OF SLOWLY GROWTH

The subclass of a zero order entire function f is pointed out for which the existence of angular v-density for zeros of entire function of zero order is equivalent to convergence in $L^p[0,2\pi]$ -metric of its logarithmic derivative.

Key words and phrases: logarithmic derivative, entire function, angular density, Fourier coefficients, slowly increasing function.

Ivan Franko National University, 1 Universytetska str., 79000, Lviv, Ukraine E-mail: memyr23@gmail.com (Mostova M.R.), m_zabol@franko.lviv.ua (Zabolotskyj M.V.)

INTRODUCTION

Let L be the class of all positive non-decreasing unbounded continuously differentiable on $[0,+\infty)$ functions v such that $rv'(r)/v(r) \to 0$ as $0 < r_0 \le r \to +\infty$. It is known (see [1, p. 15]) that the class L coincides with the class of slowly increasing functions accurate to the equivalent functions. By $H_0(v)$, $v \in L$, we denote the class of entire functions f of zero order for which $0 < \Delta = \overline{\lim_{r \to +\infty}} n(r)/v(r) < +\infty$. Without loss of generality we assume that f(0) = 1.

We will say that zeros of function $f \in H_0(v)$, $v \in L$, have an angular v- density, if the limit

$$\Delta(\alpha, \beta) = \lim_{r \to +\infty} \frac{n(r, \alpha, \beta)}{v(r)}$$

exists for all α and β , that do not belong to some no more than countable set from $[0,2\pi]$. Here $n(r,\alpha,\beta)$ is the number of zeros a_n of the function f, which lie in the sector $\{z\colon |z|\leq r, \alpha\leq \arg z<\beta\}$, $0\leq \alpha<\beta<2\pi$.

We also denote by $F(z)=z\frac{f'(z)}{f(z)}$ the logarithmic derivative of f, by \mathcal{E}_{η} the family of all measurable sets $G\subset\mathbb{R}_+$ such that $\overline{\lim_{r\to+\infty}}\operatorname{mes}(G\cap[0,r])/r\leq\eta$, $0<\eta<1$.

Theorem ([2]). Let $v \in L$, $f \in H_0(v)$ and zeros of the function f have angular v-density. Then there exists a set $G \in \mathcal{E}_{\eta}$ such that, for arbitrary $p \in [1, +\infty)$,

$$\left\| \frac{F(re^{i\theta}) - n(r)}{v(r)} \right\|_{p} \to 0, \quad r \to +\infty, \quad r \notin G.$$

УДК 517.53

2010 Mathematics Subject Classification: 30D20.

The converse statement is false. The question is under which conditions for $f \in H_0(v)$ from the convergence in $L^p[0,2\pi]$ -metric of the function F the existence of angular v-density of zeros of f will follow. We note [3], that in the case of an entire function f of non integer order $\rho > 0$ the existence of angular density of its zeros is equivalent to the following

$$\left\|\frac{F(re^{i\theta})}{r^{\rho(r)}}-g(\theta)\right\|_{p}\to 0, \ r\to +\infty, \ r\notin G, G\in \mathcal{E}_{\eta},$$

where $p \in [1, +\infty)$, $g \in L^1[0, 2\pi]$, $\rho(r)$ is the proximate order of f, $\rho(r) \to \rho$, $r \to +\infty$.

In this paper we will point out the subclass of entire function f from the class $H_0(v)$, for which the existence of angular v-density of zeros of the function f will be equivalent to the convergence of the logarithmic derivative F in $L^p[0,2\pi]$ -metric.

1 Main results

Let us denote by $\Gamma_m = \bigcup\limits_{j=1}^m \{z\colon \arg z = \theta_j\} = \bigcup\limits_{j=1}^m l_{\theta_j}, -\pi \leq \theta_1 < \theta_2 < \ldots < \theta_m < \pi$, the finite system of rays, by $n(r,\theta_j;f) = n(r,\theta_j)$ the number of zeros of $f\in H_0(v)$ lying on the ray $l_{\theta_j} = \{z\colon \arg z = \theta_j\}$ and modules of which do not exceed r. Let $h_j(\theta) = (\theta - \pi - \theta_j), \theta_j < \theta < \theta_j + 2\pi$, and $\widehat{h}_j(\theta)$ be its periodic continuation from $(\theta_j,\theta_j+2\pi)$ on $\mathbb{R},j=\overline{1,m}$. For $\widetilde{v}\in L$ we set

$$v(r) = \int_{0}^{r} \frac{\widetilde{v}(t)}{t} dt.$$

It is easy to see that $v \in L$ and $\widetilde{v}(r) = o(v(r))$ as $r \to +\infty$.

Theorem 1. Let $\tilde{v} \in L$, $f \in H_0(v)$. Suppose that zeros of the function f lie on the finite system of rays Γ_m and for each $j = \overline{1, m}$, $\Delta_j > 0$

$$n(r,\theta_i) = \Delta_i v(r) + o(\widetilde{v}(r)), \quad r \to +\infty.$$
 (1)

Then

$$\left\| \frac{F(re^{i\theta}) - n(r)}{\widetilde{v}(r)} - iH_f(\theta) \right\|_{v} = \left\| \frac{F(re^{i\theta}) - \Delta v(r)}{\widetilde{v}(r)} - iH_f(\theta) \right\|_{v} \to 0, \ r \to +\infty, \tag{2}$$

where $H_f(\theta) = \sum_{j=1}^m \Delta_j \hat{h}_j(\theta)$, $\Delta = \sum_{j=1}^m \Delta_j$.

Theorem 2. Let $G \in L^1[0,2\pi]$, $\widetilde{v} \in L$, $f \in H_0(v)$. Suppose that zeros of the function f lie on the finite system of rays Γ_m and

$$\left\| \frac{F(re^{i\theta}) - n(r)}{\tilde{v}(r)} - iG(\theta) \right\|_{p} \to 0, \ r \to +\infty.$$
 (3)

Then zeros of the function f have an angular v-density, moreover $\int_{0}^{2\pi} G(\theta)d\theta = 0$.

ADDITIONAL RESULTS

To prove Theorems 1, 2 we will use the following results, which we formulate as lemmas.

Lemma 1 ([1]). Let $v \in L$. Then for $k \in \mathbb{N}$

$$r^{k} \int_{r}^{+\infty} \frac{v(t)}{t^{k+1}} dt = \frac{1}{k} v(r) + o(v(r)), \quad r \to +\infty,$$

$$r^{-k}\int_{0}^{r}\frac{v(t)}{t^{-k+1}}dt=\frac{1}{k}v(r)+o(v(r)),\quad r\to+\infty.$$

Lemma 2. Let $v \in L$, $\varepsilon(t)$ be a function, locally integrable on $[1, +\infty)$, and $\varepsilon(t) \to 0$ as $t \to +\infty$. Then for $k \in \mathbb{N}$

$$r^k \int\limits_r^{+\infty} \frac{\varepsilon(t)v(t)}{t^{k+1}} dt = o(v(r)), \quad r \to +\infty,$$

$$r^{-k}\int\limits_0^r rac{arepsilon(t)v(t)}{t^{-k+1}}dt=o(v(r)),\quad r o +\infty.$$

The proof of this lemma follows from applying L'Hopital's rule.

Let $c_k(r, \Phi)$, $k \in \mathbb{Z}$, be the Fourier coefficients of function $\Phi(re^{i\theta})$ as a function of θ , that is $c_k(r,\Phi) = \frac{1}{2\pi} \int_{0}^{2\pi} \Phi(re^{i\theta})e^{-ik\theta}, \quad r > 0.$

Lemma 3. Let $\tilde{v} \in L$, $f \in H_0(v)$, zeros of the function f lie on the finite system of rays Γ_m and (1) holds. Then there exists $r_0 > 0$ such that for $k \in \mathbb{Z} \setminus \{0\}$ the relations

$$c_k(r,F) = -\frac{\Delta_k}{k}\widetilde{v}(r) + o(\widetilde{v}(r)), \quad r \to +\infty,$$

$$|c_k(r,F)| \leq \frac{2\Delta}{|k|} \widetilde{v}(r), \quad r \geq r_0, \Delta > 0, \widetilde{\Delta}_k > 0,$$

hold.

Proof. Since $n_k(r) = \sum_{j=1}^m e^{-ik\theta_j} n(r, \theta_j)$, owing to (1) we have

$$n_k(r) = \widetilde{\Delta}_k v(r) + o(\widetilde{v}(r)), \quad r \to +\infty,$$

where $\widetilde{\Delta}_k = \sum_{j=1}^m \Delta_j e^{-ik\theta_j}$.

From formulas for calculating the coefficients $c_k(r, F)$ [2, Lemma 3] and the last identity, using Lemma 2, we obtain

$$c_{k}(r,F) = n_{k}(r) - kr^{k} \int_{r}^{+\infty} \frac{n_{k}(t)}{t^{k+1}} dt = \widetilde{\Delta}_{k} v(r) + o(\widetilde{v}(r)) - k\widetilde{\Delta}_{k} r^{k} \int_{r}^{+\infty} \frac{v(t)}{t^{k+1}} dt - kr^{k} \int_{r}^{+\infty} \frac{o(\widetilde{v}(r))}{t^{k+1}} dt$$

$$= \widetilde{\Delta}_{k} v(r) - k\widetilde{\Delta}_{k} r^{k} \left(\frac{v(r)}{kr^{k}} + \frac{1}{k} \int_{r}^{+\infty} \frac{\widetilde{v}(t)}{t^{k+1}} dt \right) + o(\widetilde{v}(r)) = -\widetilde{\Delta}_{k} r^{k} \int_{r}^{+\infty} \frac{\widetilde{v}(t)}{t^{k+1}} dt + o(\widetilde{v}(r)), \ k \in \mathbb{N},$$

as $r \to +\infty$.

Similarly, for $k \in \mathbb{Z}$, k < 0,

$$c_k(r,F) = \widetilde{\Delta}_k r^k \int\limits_0^r \frac{\widetilde{v}(t)}{t^{k+1}} dt + o(\widetilde{v}(r)), \quad r \to +\infty.$$

From this and Lemma 1 we have

$$c_k(r,F) \sim -\frac{\widetilde{\Delta}_k}{k}\widetilde{v}(r), \quad r \to +\infty,$$

 $|c_k(r,F)| \leq \frac{2\Delta}{|k|}\widetilde{v}(r), \quad r \geq r_0.$

3 Proof of the main results

Proof of Theorem 1. We set

$$b_{k} := c_{k}(H_{f}) = \frac{1}{2\pi} \sum_{j=1}^{m} \Delta_{j} \int_{0}^{2\pi} \hat{h}_{j}(\theta) e^{-ik\theta} d\theta = \frac{1}{2\pi} \sum_{j=1}^{m} \Delta_{j} \int_{\theta_{j}}^{\theta_{j}+2\pi} h_{j}(\theta) e^{-ik\theta} d\theta$$

$$= \frac{i}{k} \sum_{j=1}^{m} \Delta_{j} e^{-ik\theta_{j}} = \begin{cases} \frac{i\widetilde{\Delta}_{k}}{k}, & k \neq 0, \\ 0, & k = 0. \end{cases}$$

$$(4)$$

Therefore $|b_k| \leq \frac{\Delta}{|k|}$, $k \neq 0$. Since, by Lemma 3, $|c_k(r,F)| \leq \frac{2\Delta}{|k|}\widetilde{v}(r)$, the sequence $\left(\frac{c_k(r,F)}{\widetilde{v}(r)} - ib_k\right)_{k \neq 0}$ belongs to the space l_q with q > 1, $r \geq r_0$. We have

$$c_k(r, F(z) - n(r)) = c_k(r, F)$$
 for $k \neq 0$.

Thus by Hausdorff-Young theorem [4, p. 153] for $p \ge 2$, $\frac{1}{p} + \frac{1}{q} = 1$,

$$\left\| \frac{F(re^{i\theta}) - n(r)}{\widetilde{v}(r)} - iH_f(\theta) \right\|_p \le \left\{ \sum_{k \ne 0} \left| \frac{c_k(r, F)}{\widetilde{v}(r)} - ib_k \right|^q \right\}^{\frac{1}{q}}.$$

Since the resulting series is uniformly convergent for all $r \ge r_0$, by making the limiting transition as $r \to +\infty$ in the last inequality and owing to Lemma 3 and identity (4) we obtain

$$\left\| rac{F(re^{i heta})-n(r)}{\widetilde{v}(r)}-iH_f(heta)
ight\|_p o 0, \ r o +\infty,$$

for $p \ge 2$. By Holder's inequality $\|\cdot\|_p \le \|\cdot\|_2$ for $1 \le p < 2$, that is (2) is also valid for $1 \le p < 2$. The Theorem 1 is proved.

Proof of Theorem 2. Let us denote by g_k the Fourier coefficients of function G, namely $g_k =$ $c_k(G)$. Then, by (3), we obtain

$$\left| \frac{c_k(r,F) - n(r)}{\widetilde{v}(r)} - ig_k \right| = \left| \frac{c_k(r,F - n(r))}{\widetilde{v}(r)} - ig_k \right| = \left| \frac{1}{2\pi} \int_0^{2\pi} \left(\frac{F(re^{i\theta}) - n(r)}{\widetilde{v}(r)} - iG(\theta) \right) e^{-ik\theta} d\theta \right|$$

$$\leq \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{F(re^{i\theta}) - n(r)}{\widetilde{v}(r)} - iG(\theta) \right| d\theta \leq \left\| \frac{F(re^{i\phi}) - n(r)}{\widetilde{v}(r)} - iG(\theta) \right\|_p \to 0,$$

as $r \to +\infty$. Since $c_0(r, F) = n(r)$ from the last relation we find $g_0 = 0$, that is

$$\int_{0}^{2\pi} G(\theta)d\theta = 0.$$

For $k \neq 0$ owing to $l_k(r) := c_k(r, \ln f) = \int_{0}^{r} \frac{c_k(t, F)}{t} dt$ we obtain

$$ig_{k} = \lim_{r \to +\infty} \frac{c_{k}(r, F)}{\widetilde{v}(r)} = \lim_{r \to +\infty} \frac{\int\limits_{0}^{r} c_{k}(t, F)/t dt}{\int\limits_{0}^{r} \widetilde{v}(t)/t dt} = \lim_{r \to +\infty} \frac{c_{k}(r, \ln f)}{v(r)}.$$
 (5)

By identities (see, for instance, [5, Lemma 1])

$$l_k(r) = -r^k \int_{r}^{+\infty} \frac{n_k(t)}{t^{k+1}} dt = -r^k \sum_{j=1}^{m} e^{-ik\theta_j} \int_{r}^{+\infty} \frac{n(r,\theta_j)}{t^{k+1}} dt, \ k = \overline{1,m},$$

we have the linear system of equations with respect to the quantities $n(r, \theta_j)$, $j = \overline{1, m}$,

$$\begin{cases} \sum\limits_{j=1}^m e^{-i\theta_j} n(r,\theta_j) = r l_1'(r) - l_1(r), \\ \sum\limits_{j=1}^m e^{-i2\theta_j} n(r,\theta_j) = r l_2'(r) - 2 l_2(r), \\ \vdots \\ \sum\limits_{j=1}^m e^{-im\theta_j} n(r,\theta_j) = r l_m'(r) - m l_m(r). \end{cases}$$

Since

$$\begin{vmatrix} e^{-i\theta_1} & e^{-i\theta_2} & \dots & e^{-i\theta_m} \\ e^{-i2\theta_1} & e^{-i2\theta_2} & \dots & e^{-i2\theta_m} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-im\theta_1} & e^{-im\theta_2} & \dots & e^{-im\theta_m} \end{vmatrix} \neq 0,$$

we have

$$n(r,\theta_j) = \sum_{k=1}^m b_{kj}(kl_k(r) - rl'_k(r)) = \sum_{k=1}^m b_{kj}(kl_k(r) - c_k(r,F)),$$

where $b_{kj} \in \mathbb{C}$. Taking into consideration (5) and the last identities we obtain for $j = \overline{1, m}$

$$n(r,\theta_{j}) = (1 + o(1))i \sum_{k=1}^{m} b_{kj}(kg_{k}v(r) - g_{k}\widetilde{v}(r)) = i \sum_{k=1}^{m} b_{kj}kg_{k}v(r) + o(v(r))$$
$$= \Delta_{j}v(r) + o(v(r)), \quad r \to +\infty.$$

Hence, zeros of the function *f* have an angular *v*-density.

Remark. By the conditions of Theorem 2 it is easy to verify that $G(\theta) = H_f(\theta)$ for almost all $\theta \in [0, 2\pi]$.

REFERENCES

- [1] Seneta E. Regularly varying functions. Nauka, Moscow, 1985.
- [2] Zabolotskyj M.V., Mostova M.R. Logarithmic derivative and the angular density of zeros for a zero-order entire function. Ukrainian Mat. Zh. 2014, **66** (4), 530–540. doi:10.1007/s11253-014-0950-7 (translation of Ukrain. Mat. Zh. 2014, **66** (4), 473–481. (in Ukrainian))
- [3] Vasylkiv Ya.V. Asymptotic behavior of the logarithmic derivatives and the logarithms of meromorphic functions of completely regular growth in $L^p[0,2\pi]$ -metrics. II. Mat. Stud. 1999, 12 (2), 135–144. (in Ukrainian)
- [4] Zigmund A. Trigonometric series. Mir, Moscow, 1965. (in Russian)
- [5] Bodnar O.V., Zabolotskyj M.V. *The criteria for regularity of growth of the logarithm module and argument of an entire function*. Ukrainian Mat. Zh. 2010, **62** (7), 1028–1039. doi:10.1007/s11253-010-0411-x (translation of Ukrain. Mat. Zh. 2010, **62** (7), 885–893. (in Ukrainian))

Received 28.09.2015

Revised 11.12.2015

Заболоцький М.В., Мостова М.Р. Збіжність в $L^p[0,2\pi]$ -метриці логарифмічної похідної і кутова v-щільність нулів цілої функції повільного зростання // Карпатські матем. публ. — 2015. — Т.7, \mathbb{N}^2 . — С. 209–214.

Виділено підклас цілих функцій f нульового порядку, для яких поняття існування кутової v-щільності нулів f та збіжність в $L^p[0,2\pi]$ -метриці її логарифмічної похідної є рівносильними.

 $Ключові \ слова \ i \ фрази: \ логарифмічна похідна, ціла функція, кутова щільність, коефіцієнти <math>\Phi$ ур'є, повільно зростаюча функція.