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GENERALIZED TYPES OF THE GROWTH OF DIRICHLET SERIES

Let ® be a continuous function on [0p, A) such that ®(0) - +o0asoc — A —0, where A €
(—o00,+00]. We establish a necessary and sufficient condition on a nonnegative sequence A = (A;),
increasing to +oco, under which the equality

——InM(0,F) ——Inpu(c,F)
oy B P R S

holds for every Dirichlet series of the form F(s) = Yoo ase’, s = ¢ + it, which is absolutely

convergent in the half-plane Res < A. Here M(c,F) = sup{|F(s)| : Res = ¢} and u(c,F) =

max{|a,|e”* : n > 0} are the maximum modulus and maximal term of this series respectively.
Key words and phrases: Dirichlet series, maximum modulus, maximal term, generalized type.
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INTRODUCTION

Let INg be the set of all nonnegative integer numbers, R=RU {—00, 40}, A be the class
of all nonnegative sequences A = (A, ), increasing to +o0, A € (—o0, 40|, and (4 be the class
of all continuous functions ® on [0y, A), such that

VxeR: (lyiﬁ(x(r —®(0)) = —oo. (1)

Note that in the case A < +oo the condition (1) is equivalent to the condition () — +oo,
o — A —0, and in the case A = +oo this condition is equivalent to the condition ®(c)/c —
+o00, 0 — +c0.

For a sequence A € A let

— Inn
T(A) = lim =~
Consider a Dirichlet series of the form
F(s) = Z a,eM, s =0+ it, (2)
n=0

and put

— . - /\n — . 3 /\n_
El(F)_{aelR.Eowe” <+oo}, EZ(F)_{UGR.}}%W(;” _0},

ou(F) = {—oo, if E1(F) = o, B(F) = {—oo, if E5(F) = o,

sup E1(F), ifEi(F) # @, sup Ex(F), ifEx(F) # @
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(04(F) is the abscissa of absolute convergence for the Dirichlet series (2)).

It is easy to show that
B(F) = lim — In—

n .
n—oo An |an|

Also, it is well known (see, for example, [7, p. 114-115]), that
oa(F) < B(F) < 0a(F) +7(A)

and these inequalities are sharp (more precisely, for every A,B € R such that A < B <
A+ T(A) there exists [3] a Dirichlet series F of the form (2) such that o, (F) = A and B(F) = B).

If 0,(F) > —oo, then for each ¢ < 0,(F) let M(c,F) = sup{|F(s)| : Res = o} be the
maximum modulus of the series (2). If (F) > —oo, then for each ¢ < B(F) let u(c,F) =
max{|ay|e”* : n € N} be the maximal term of this series. As is well known, in the case
0a(F) > —oo we have u(c,F) < M(c, F) forall o < o,(F).

By D4(A) we denote the class of all Dirichlet series of the form (2) such that 0,(F) > A.
Put Dy = UpyeaDa(A). For @ € Q4 and F € Dy, the value

——InM(o, F)
Te(F) =Tp a(F) = lim —————=
<I>( ) CID,A( ) UlTrf‘ll CI)( 0.)
will be called ®-fype of the series F in the half-plane {s : Res < A}.
By D7 (1) we denote the class of all Dirichlet series of the form (2) such that §(F) > A. Set
D% = UpeaD% (). For ® € Q4 and F € D we put

If F € Dy, then (o, F) < M(0o, F) foreach o < A, so te(F) < Te(F).

Note that D4(A) C D3 (A) for every sequence A € A. From what has been said above it fol-
lows that in the case A < 400 we have D4 (A) = D7 (A) if and only if T(A) = 0. Furthermore,
Dio(A) = D3 (A) if and only if T(A) < +oo. Itis clear that D4 C D% and Dy # D3

The notion of ®-type generalizes the classical notion of the type for entire Dirichlet series.

Let F be an entire Dirichlet series, i.e. F € D, and p be a fixed positive number. Recall
that In M(o, F)

— InM(o,
T(F) = U]j]}inoo 76()0_
is called the type of the series F. If A € A and T(A) = 0, then the type of every entire Dirichlet
series of the form (2) can be calculated (see, for example, [7, p. 178]) by the formula
T(E) = Tim 22|, | . 3)

n—oo ep
Let ® € () 4. The function
®(x) = sup{xc —®(0) : 0 € [0y, A)}, x€ER,

is said to be Young conjugate to ® (see, for example, [1, pp. 86-88]). The following properties
of the function ® are well known (see also Lemmas 2 and 3 below): ® is convex on R; if @ is
the right-hand derivative of @, then ®(x) = x¢(x) — P(¢(x)), x € R, ¢(x) < Aon R and
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¢(x) N Aasx T 4oo;if xg = inf{x > 0 : ®(¢(x)) > 0}, then the function ®(x) = D(x)/x
increase to A on (xg, +0). Since ® is convex on R, @ is continuous on R. Thus, the function
® is continuous on (xp, +0). Let Ag = ®(x9 +0) and ¢ : (Ag, A) — (xp, +°) be the inverse
function of ®. Set () = +oo for o € [A, +o0]. Let F € D be a Dirichlet series of the form

(2). Then B(F) > A, so that
1 1

Anlau] =
Let t > 0 be a fixed number and h(0) = t®(0), o € [0y, A). Then h(x) = t®(x/t), x € R, and
hence h(x) = x®(x/t), x > txy. Using Lemma 5, given below, we obtain

- A,
to(F) = im —— 2" @)

Therefore, for every Dirichlet series F € D7 of the form (2) we have (4). Consequently, if
F € D, is a Dirichlet series of the form (2) such that To(F) = to(F), then ®-type of this series
can be calculated by the formula

FE )\}’l
Te(F) = lim ——2——. (5)
n—»00 1’0 ()\iﬂ In |a1,1|)

Note, that in the classical case, considered above (A = 400, ®(0) = ¢’), the formula (5)
coincides with the formula (3). In this connection the following problem arises.

Problem 1. Let A € A, ® € Q4. Find a necessary and sufficient condition on the sequence A
and the function ® under which Te(F) = te(F) for every Dirichlet series F € D y.

In particular cases Problem 1 is solved in [2, 4, 5, 8, 6]. Denote by )% the class of all
function ® € ()4, convex on [0y, A). If & € O, then the one-sided derivatives @’ and d>’+ are
nondecreasing functions on [0y, A) and &’ (0) — 400, x T A. Besides, using the definition of
the function ® and Lemma 3, given below, it is easy to prove that

L (p(x)) <x <@L (p(x)), x> x0:= D (0p). 6)

The solution of Problem 1, in the case of the sequence A = (1) and an arbitrary function
® € ()}, was obtained practically in [2, 4] for A = 400 and in [5] for every A € (—o0, +0]
(actually, the growth of power series was investigated in [2, 4, 5]). We state a result from [5] in
the following equivalent formulation.

Theorem A. Let A = (n), A € (—co,+o0|, and ® € OF. Then for every Dirichlet series
F € Da(A) the equality Te(F) = te(F) holds if and only if
In®, (o) =o(®(0)), o1 A.

Let @ : [09, A) — R be a continuously differentiable function from the class (0% such that
@’ is a positive function, increasing on [0y, A). From (6) it follows that the restriction of the
right-hand derivative ¢ of the function ® to (xg, +o0) is the inverse function of ®’. Put

o€ [0p, A).
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(As is well known, the function ¥ is called the Newton transform of ®.) It is easy to see that
Y(¢(x)) = ®(x), x € [xg,+00). For a sequence A € A, let ny(x) = ¥, <, 1 be its counting
function. The next theorem was proved by M. M. Sheremeta [8].

Theorem B. Let A € A, A € (—o0, 40|, ® € (Y, be a twice continuously differentiable func-
tion on [0y, A) such that &' (¢)/®(c) / 4+o0 and In®’' () = o(P(0)) as o 1 A. Then for every
Dirichlet series F € D4(A) the inequality t(F) < 1 implies the inequality Te(F) < 1 if and
only if

Inny(x) =o(P(¥(e(x)))), x— +oo. (7)

Remark 1. We can rewrite (7) in the form

Inny(x) =o(P(D(x))), x— +oo.
Furthermore, as is easily seen, the condition (7) is equivalent to each of the conditions

Inm (@(0)) = 0(@(¥(0))), o1 4
Inn =o(®(D(Ny))), n— co.

Remark 2. The sufficiency of the condition (7) in Theorem B was proved in [§8] only by the
condition that ® € () is a twice continuously differentiable function such that the function
@’ /® is nondecreasing on [0y, A).

Let t € (0,4+0) be a fixed number. If ® satisfy the conditions of Theorem B, then the
function t® also satisfy these conditions. Applying Theorem B with t® instead of ® and taking
into account Remark 1, we see that Te(F) = te(F) for every Dirichlet series F € Dy (A) if an
only if

Vt>0: Inn=o(®(®(A,/t))), n—oo. (8)

Note also that Theorem B does not imply Theorem A. In addition, Theorem B does not give
the answer to the next question: whether the condition T(A) = 0 is necessary in order that (3)
holds for every entire Dirichlet series of the form (2)? Note, that the positive answer to this

question was obtained in [6].
In connection with Theorem B the next problem arises.

Problem 2. Let Ty > ty > 0 be arbitrary constants, A € A, and ® € Q4. Find a necessary
and sufficient condition on the sequence A and the function ® under which for every Dirichlet
series F € D, such that te(F) = to the inequality To(F) < Ty holds.

In this article we obtain the complete solutions of Problems 1 and 2.
1 THE STATEMENT OF MAIN RESULTS
For a sequence A € A, a function ® € ()4 and every t, > t; > 0 we put

_ Inn
Alty, ) = A t1,t) = lim — ~ .
(ot = Bealh o) = Jin L ) — (/1)

First we mention some properties of A(ty, tp).
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If d is a fixed number, then for the function (t) = t®(d/t), t € R\{0}, we have

0-5(0) 42 (8)--+(+(2)
(2) () [o(o(2)

Let a > 0 be a fixed number. Consider the function y = A(a,t), t € (a,4o0). Using (9),
Lemmas 2 and 6, given below, and taking into account that the function a(x) = ®(¢(x)) is
positive on (xg, +0), for every t; > t; > a we obtain

Hence,

y(ta).

t
0<y(t) <y(h) <
1—4a

It follows from this that the next three cases are possible: the function y is identically equal to
0; the function y is identically equal to +oo; the function y is positive continuous nonincreasing
on (a, +0).

Let b > 0 be a fixed number. Consider the function y = A(t,b), t € (0,b). Using again
Lemma 6, for every 0 < t; < t, < b we obtain

b—t
0<y(h) < g—7y(k).
-1

This implies that if y(t;) = 0 for some t; € (0,b), then y(t) = 0 on (0, tp]; if y(t1) = +oo for
some t; € (0,b), then y(t) = 400 on [t1, b); if the function y does not take the value 0 and oo
at some point ¢ € (0, b), then this function increase at the point .

Note also that the function a(x) = ®(¢(x)) is nondecreasing on [0, +o0), by Lemma 3,
given below. Consequently, from (9), for every d > 0 and ¢, > t; > 0, we have

ea(o(§) 08(2) (1) s (o()- om

The solution of Problem 1 is contained in the following theorem.

Theorem 1. Let A € A, A € (—oo,+0], and ® € Q4. Then for every Dirichlet series F €
D4 (M) the equality Te(F) = te(F) holds if and only if

Vi>0: Inn=o(P(e(An/t))). (11)

Remark 3. The conditions (8) and (11) are equivalent for every function ® € (). This fact
follows from the inequalities

(1-q)@(¢(gx)) < (P(x)) < P(¢(x)), (12)

which hold for every fixed q € (0,1) and all large enough x (see Lemma 8 below).

Note also that if F € Dy(A) and te(F) = +oo, then Te(F) = +oo, by the inequality
u(o,F) < M(o,F), 0 < A, so that Te(F) = te(F). In this connection, the next theorem
makes more precise Theorem 1 in the part of the sufficiency of (11).
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Theorem 2. Let A € A, A € (—oc0,+00|, and ® € O 4. If the condition (11) holds, then every
Dirichlet series F from the class D% (A) such that t(F) < 400 belong to the class D4 () and
for this series we have Tg (F) = tg(F).

The solution of Problem 2 is contained in the following theorem.

Theorem 3. Let A € A, A € (—o0, 40|, ® € Oy, and Ty > ty > 0 be arbitrary constants. Then
for every Dirichlet series F € D4 (A) such that te(F) = tg the inequality Te(F) < Ty holds if
and only if

VT > Ty3ce (to, T): A, T) <1 (13)

By Theorem 3, for every Dirichlet series F € D4 (A) the inequality to(F) < 1 implies the
inequality Te(F) < 1if and only if

VT >13dce (1, T): A(.,T) <1 (14)
If A=+ooand ®(0) = olno, o > e, then, as is easy to show, the condition (14) becomes

m Inlnn
ngl;lo An

<1,

but the condition (7) from Theorem B takes the form
Inn=o(eM), n— oo.

Hence, generally, the condition (14) does not coincide with the condition (7).
In the part of the sufficiency of (13) the Theorem 3 can be made more precise.

Theorem 4. LetA € A, A € (—oo, 0], ® € Oy, and Ty > ty > 0 be arbitrary constants. If the
condition (13) holds, then every Dirichlet series F from the class D’ (A) such that to(F) = tg
belong to the class D4 (A) and for this series we have Te(F) < Tj.

Theorems 3 and 4 follow immediately from Theorems 5 and 6, given below, respectively.

Theorem 5. Let A € A, A € (—o0, 40|, ® € Oy, and Ty > ty > 0 be arbitrary constants. Then
for every Dirichlet series F € D4 (A) such that ty(F) = tg the inequality Te(F) < Ty holds if
and only if

dc € (to, To) : A(C, To) <1 (15)

Theorem 6. Let A € A, A € (—o0,+00|, & € Oy, and Ty > ty > 0 be arbitrary constants. If the
condition (15) holds, then every Dirichlet series F from the class D% (A) such that ts(F) = tg
belong to the class D4 (A) and for this series we have Te(F) < Tp.

Theorem 6 follows from the next more general result.
Theorem 7. LetA € A, A € (—o0,+o0], and ®,T € Q4. If
s 1

I”IX::O ecT)()‘n)_f()‘n)

< +o00, (16)

then every Dirichlet series F from the class D’ (A) such that Inu(c,F) < ®(0), ¢ € [0, A),
belong to the class D4 (A) and for this series we have In M(0,F) <T(c), o € 03, A).
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2 AUXILIARY RESULTS

Denote by X the class of all functions : : R — R. Suppose h € X and let i € X be the
Young conjugate function to £, i.e.

h(o) =sup{ox —h(x):x € R}, ceR.

Itis clear thatif , g € X and h(x) > g(x) forall x € R, then h(c) < g(0) forallo € R.

Let h € X. Then /i(x) < h(x) for each x € R, where / is the Young conjugate function to
h. Indeed, the definition of & implies that for every o, x € R the inequality ox — h(x) < h(c)
holds. Then x¢ — h(c) < h(x) for every ¢, x € R. From this it follows that i1(x) < h(x) for
each x € R.

Lemma 1. Leth, g € X. Then the following conditions are equivalent:
(i)h(c) < g(o) forallc € R;
(ii) h(x) > g(x) forall x € R.

Proof. If the condition (i) holds, then i(x) > §(x) for each x € R. Since hi(x) < h(x) for all
x € R, from this it follows (ii).

If the condition (ii) holds, then h(c) < g(c) for each ¢ € R. Since 3(¢) < g(c) for all
0 € R, from this it follows (i). O

Lemma 2. Leth € X. Then h is a convex function on R, i.e. for every x1, X2, x3 € R such that
x1 < xp < x3 we have

h(x2)(x3 — x1) < h(x1)(x3 — x2) + h(x3)(x2 — x1). (17)
Proof. For each t € R we have
(txa — k(1)) (x5 — x1) = (tx1 = h()) (x5 — x2) + (bx3 — (t)) (x2 — x1)-
From this equality and the definition of /i we have (17). O

For a functionh € X we put D, = {x € R: h(x) < +oo}. Itis clear that in the definition of
h(c) we can take the supremum by all x € Dj, instead the supremum by all x € RR.

Let A € (—oo,+co] and @ : [0p, A) — R be a function from the class Q4. We assume
that the function ® belong to the class X, setting ®(0) = +oo for every o ¢ [0p, +00) (then
D¢ = [09, +0)). Fix some x € R and set

y(o) = x0c—®(0), o€ oy, A).

The function y is continuous on [0y, A). In addition, by (1), y(¢) — —oo as o T A. Hence, this
function assumes its supremum on [0y, A), i.e.

®(x) = maxy(o).

>0y

Consider the set

S(x) = {0 > 00 y(o) = B(x)}.
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From what has been said it follows that the set S(x) is nonempty and bounded. Let ¢(x) =
sup S(x). Then ¢(x) € S(x), i.e. maxS(x) exists and ¢(x) = max S(x). Indeed, if we assume
that ¢(x) ¢ S(x), then the set S(x) is infinite and ¢ < ¢(x) for every o € S(x). Let (0,,) be
a sequence of points in S(x), increasing to ¢(x). For every n € Ny we have y(o;,) = ®(x).
Letting 7 to oo and using the continuity of the function ®, we obtain y(¢(x)) = ®(x), i.e.
¢(x) € S(x), but this contradicts the assumption that ¢(x) ¢ S(x). Hence, max S(x) exists and
@(x) = max S(x).

Lemma 3. Let A € (—o00,+c0], ® € Oy, and ¢(x) = max{c € [0p, A) : x0 — D(0) = P(x)},
x € R. Then:

(i) the function ¢ is nondecreasing on R;

(ii) the function ¢ is continuous from the right on R;

(iii) p(x) — A, x — +00;

(iv) the right-hand derivative of ®(x) is equal to ¢(x) at every point x € R;

(v) if xo = inf{x > 0 : ®(¢(x)) > 0}, then the function ®(x) = ®(x)/x increase to A on
(xp, +00);

(vi) the function a(x) = ®(¢(x)) is nondecreasing on [0, +c0).

Proof. (i) Let x1 < xa. Since x;(x;) — ®(¢(x;)) = EIVD(x]-),j € {1,2}, the definition of ® implies
the following inequalities

19(x1) = S(p(x1)) = x19(x2) = D(@(x2)),  x20(x2) — P9 (x2)) = x29(x1) — D((x1))-

Adding these inequalities, we obtain (¢(x2) — ¢(x1))(x2 — x1) > 0. From this it follows that
p(x1) < plx2).

(i) Let xo € R be a fixed point. By (i) it follows that the right-hand limit ¢(xy + 0) exists
and @(xg +0) > ¢(xp). Let us prove that ¢(xo +0) = ¢(xp), i.e. that ¢ is continuous from the
right at the point xo. Indeed, the definition of ® implies the inequality

x¢(x0) — P(9(x0)) < x9(x) — D(9(x)).

Letting x to xq from the right, we obtain ®(xy) < x@(xp + 0) — ®(¢(xo + 0)). On the other
hand, ®(xg) > xo¢(xo + 0) — ®(@(xp + 0)). Hence, ®(xy) = xop(xg + 0) — ®(g(xo + 0)).
Then from the definition of ¢ we obtain ¢(xg + 0) < ¢(xp) and thus ¢(xy +0) = ¢(xp).
(iii) Suppose the contrary, that is ¢(+00) = B < A. Let C € (B, A). Using the definition of
the function ®, we have
xC = @(C) < x¢(x) — P(9(x))

for every x € R. This implies that

X(C = ¢(x)) < @(C) — 2(g(x)).

Letting x to 400, we obtain +oco < ®(C) — ®(B), but this is impossible.
(iv) Let x € R be a fixed point and & > 0. From the definition of the function ® we have

S(x+h) —D(x) _ (x+h)g(x) — D(g(x)) — D(x) (%),

> pr—
2 = h
O] 60)  Bte 1)~ et OAole ) _
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Hence,

o(x) < d>(x~|—h})l—d>(x) < olxth),

Letting / to 0 and using (i), we see that the right-hand derivative of ®(x) is equal to ¢(x).
(v) Since x@(x) — P(x) = ®(p(x)) > 0 for x > xo,

@)y, — 2009

5 >0, x> xp.
X

Hence, the function ®(x) increase on (xg, +-00). Furthermore, the inequality x¢(x) — ®(x) > 0,
x > xo, implies that ®(x) < ¢(x) < A, x > xg. On the other hand, for every fixed x1 and each
X > x1 we have

D (x) = D(x; +/ Hdt > ®(x1) + (x — x1)@(x1).
From this it follows that
lim ®(x) > ¢(x1).

X—>—+00

Letting x1 to +oc0, we see that ®(x) — A, x — +o0.
(vi) Let xp > x1 > 0. Then

a(x2) — a(x1) = 02 (x2) — 219(x1) + S(x1) — P(x2) > x29(x2) — x19(x1) + (1 — x2) 9 (x2)
= x1(¢(x2) = ¢(x1)) 2 0.

Therefore, the function a(x) = ®(¢(x)) is nondecreasing on [0, +00). O

Lemma 4. Let A € (—o0, 40|, &1, Dy € Oy, and P1(0) = Oy(0) forall ¢ € [0y, A). Then
P1(x) = Dy(x) for each x > x.

Proof. For j € {1,2} let Do, = [0}, A) and
¢j(x) = max{c € [0}, A) : x0 — ®;(0) = &Dj(x)}, x € R.

Lemma 3 implies that min{¢;(x), ¢2(x)} > max{op, 01,02} for all x > x;. Then for every
x > xo we get

D1 (x) = x91(x) — Pr(g1(x)) = xg1(x) — P2(91(x)) < max(xe — Pp(0)) = Pa(x),

P (x) = xg2(x) — P2(g2(x)) = x¢2(x) — P1(2(x)) < {Téaé(w — ®@1(0)) = @1 (x),
and, hence, ®; (x) = ®y(x). O

Lemma 5. Let A € (—o0, 40|, ® € Oy, and F € D) be a Dirichlet series of the form (2). Then
Inu(o, F) < ®(0) foreach o € [0y, A) if and only ifIn |a,| < —P(A,) for alln > ny.

Proof. Suppose that Inu(c, F) < ®(0) for each o € [0y, A). We set ¥(0) = ®(0) for every
o € [0y, A) and ¥(0) = +oo for every o & [0p, A). Let h € X be the function such that h(A,) =
—In|ay| for all n € Ny and h(x) = +oo for all x € R\{Ag, A1, ...}. ThenIn u(c, F) = (o) for
o < B(F). Consequently, ii(c) < ¥(c) for each ¢ € R. By Lemma 1, h(x) > ¥(x), x € R.
Therefore, using Lemma 4, we have In |a,| = —h(A,) < =¥ (A,) = —D(A,) forall n > ng.
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Now suppose that In |a,| < —®(A,) for all n > ng. If the function p(c, F) is bounded on
(—o0, A), then, obviously, Inu(o,F) < ®(c) for each o € [0p, A). If the function u(c, F) is
unbounded on (—co, A), then we consider, along with F, the Dirichlet series

G(s) = Z beM, s=o+it, (18)
n=0

such that b, = 0 for n < ng and b, = a, for n > ny. It is easy to show that y(c, F) = u(c, G)
for each 0 € [0p, A). Besides, In |b,| < —®(A,) for all n € Ny. Hence, by Lemma 1, we have
Inpu(o,G) < ®(0), ¢ < A. This implies that In y(c, F) < ®(0) for each o € [0y, A). O

Lemma 6. Let Y be a function, convex on R, and xo > 0. Then for all t1,t,,t3 € R such that
t3 > tp > t1 > 0 we have

tr —t
Y (20) e (20) > 270 (o (20) g (20
ty ta t3 —t ty t3
t3 —t
tr t3 t3 — 11 t t3

Proof. Since ¥ is convex on R, for every ty,t,t3 € R such that t3 > t, > t; > 0 we have the

following inequality
(@D E D@6
tr 1 t3 1 tr t3 t3 1 tr
x X X
¥ (73) to(ts —t1) < ¥ <—°> bt —t)) + ¥ (72) ts(ty — ).

Multiplying this inequality by t;t,t3, we obtain
t

From this it follows that

¥ (?) ity —t) — ¥ (?) b(ts —t) > ¥ (?) hts—t) - ¥ (?) hits —t2)
1 2 1 !
—y (?) ta(tr —t1) =Y (?) ti(ta—t) =¥ (?) t3(t2 — 1),
3 1 3
4 (@) tha(ts —t1) — ¥ (f—:) t3(ts —t1) <Y <Jtc—f> ti(ts —t)+ Y <f—:> ts(t — t1)
-v (?) t3(tz —t1) =¥ <E> ti(ts —t) =¥ <E> t3(ts — t2)
3 1 3
Lemma 6 is proved. =

We note, that some of the above properties of the Young conjugate functions are well known
(see, for examle, [1, § 3.2]).

Lemma 7. Let (x,) be a positive sequence such that

lim
n—o0 x?l

=0>1

Then, for every q € (0,1), theset E(q) = {n € No : Inn > qx, A X[, /5] > qxn} is unbounded.
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Proof. 1f § = oo, then, setting m; = min{n € Ny : Inn > (k+ 1)x,}, we see that my € E(q)
for every k € INy. If § < 409, then, for some increasing sequence (px) of nonnegative integers,
we have In py ~ 6x,, k — 0. Therefore,

i = L P L /2 L Iy
k—o0 x[pk/z] 0 k—oo x[pk/z} 0 k—o0 x[pk/z] — dn—oo Xy,
It is clear that p; € E; for all k > ko(q). O

Theorem 8. Let A € (—oco,+00], A € A be a sequence such that T(A) > 0 in the case A < +o0
and T(A) = +co in the case A = +oo, and G € D% (A)\Da(A) be a Dirichlet series of the form
(18) such that b, > 0, n € INy. Then for every positive on (—oo, A) function | there exists a
Dirichlet series F € D(A) of the form (2) such that either a, = b, ora, = 0 for every n € Ny
and M(o,F) = F(c) > (o) forallo € [0y, A).

Proof. We may assume without loss of generality that the function / is nondecreasing on
(—o0, A).

Since G € D} (A)\Da(A), we have B(G) > A and 0,(G) < A. The inequality S(G) > A
implies that there exists a sequence (17, ), increasing to A, such that

1
In— >1#n, né&lNj.

An o by
Then b, < e~ """, n € Ny. Since 0,(G) < A, forall o € (¢,(G), A) and every m € INy we have
Z bpe" = +oo.
n>m

Fix some sequence (0;,), increasing to A. We choose a sequence (1) of nonnegative inte-
gers to be so rapidly increasing that the inequalities

1 My1—1

, b TkAn > ]
(k+1)2 n;nk et 2 W)

e > O e(Uk*Uk+l))\nlk+1(l(0—k+2> +1) <

hold for every k € INp. Put

P
pk:min{pzmk: Z byecM 21((7k+1)}, k € Np.

n=my

Note that my < pp < my; —1and

Pk
Hoke1) € Y bue™ < 1(0kr1) + bp ™7 < 1(ops1) + eI < 10y q) +1.

n=mniy

Letn € Ny. If n € [my, p| for some k € Ny, then we put a, = b,. If n & [my, pi] for every
k € Ny, then let a, = 0. Consider the Dirichlet series F of the form (2) and let us prove that
0a2(G) > A. Indeed, for every fixed j € Ny we have

Z 1M = ) % beitn = ) Z by ek (i) A

n>mj, k>j+1n=my k>j+1n=my
Pk
) e (T Ay Y bt
k>j+1 n=ny

< Z o Tk-1— Uk)Amk(l(o-k+1)+1 ) < Z k2 < +o00,
k>j+1 k>j+1
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so that 0,(F) > A. Moreover, if 0 € [0y, A), then ¢ € [0}, 0%, 1) for some k € N and therefore

Pk Pk Pk
Fo) > Y ane™ = Y bue™ > Y be®™ > 1(01q) > 1(0).
n=mj n=mj n=myj

Theorem 8 is proved. 0

Lemma 8. Let A € (—o0,+0], ® € O, and q € (0,1). Then the inequalities (12) hold for all
X > xg.

Proof. If ® € )Y, then the function @ is increasing on [0, A). Since
— D(p(x
D(x) = ¢(x) — Slo(x)) < @(x), x>x,

we have (P (x)) < ®(¢(x)), x > xp, i.e. the right of the inequalities (12) holds.
Further, using the convexity of the function ® and the inequalities (6), we have

@(p(x)) — P(p(qx)) < (¢(x) — @(qx)) P (@(x)) < (¢(x) — @(gx))x, x> x3,

and, hence, for all x > x4 we obtain

@(p(1)) - P(@(x)) < (p(a) =SS (9(1) < (9l1) — 9lx) + T2 ) g
< (2leax) e <> <x>>> x— ad(olax)).
This implies the left of the inequalities (12). O

3 THE PROOFS OF MAIN RESULTS

Proof of Theorem 7. Let A € A, A € (—o0, +0], and ®,T € ()4 be functions that satisfy (16).
Consider a Dirichlet series F € D% (A) of the form (2) such that Iny(c,F) < ®(0), 0 €
[01, A). By Lemma 5 we have In |a,| < —®(A,), n > n;.
Fix ny > nq such that
1
e®(An)-T(An) — 2°

n>mnp
Then for all o € [0, A) we obtain

U)\n

- 1,
5 nle = T lane™ + F fanle” < 1T 4
n=0

n<nyp n>ny n>ny qu(A")

_ lel“(a) +el"(a) Z M < el“(g) (1 Z gr()\n)> < el"(tr).

= —+ =
2 n>y eq:‘()\n) 2 n>no eq:‘()\n)

Hence, 0,(F) > A, so that F € D4(A). Furthermore, In M(c, F) < T(0), 0 € [03, A). O

Proof of Theorem 6. Let A € A, A € (—o0, 40|, ® € Oy, and Ty > ty > 0 be some constants.
Assume that the condition (15) holds, i. e. for some c € (g, Tp) we have A(c, Tp) < 1. Consider
the functiony = A(c, t), t € (¢, +00). It follows from the properties of this function, described
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above, that there exists a point T € (c, Tp) such that A(c,T) < 1. Letq € (A(c,T),1). Then
there exists ny € INy such that

Inn §q<célv> <%) — T <%)>, n > ng,

> 1
nX::O ee®(An/c)=TP(A,/T)
Consider some Dirichlet series F € D% (A) such that tg(F) = to. Then to(F) < ¢, and hence
Inpu(o,F) < c®(0), 0 € [07,A). By Theorem 7, in view of (19), the series F belong to the class
Dy (A) and for this series the inequality In M(c, F) < T®(c) holds for all ¢ € [0, A), so that

To(F) < T < To. 0

and thus
< +oo. (19)

Proof of Theorem 5. In view of Theorem 6, it remains only to prove the necessity of the condition
(15).
We suppose that this condition is false, i.e. A(c, Tp) > 1 for all ¢ € (ty, Tp), and prove that
there exists a Dirichlet series F € D 4(A) of the form (2) such that ty(F) = ty, but Te(F) > Tp.
For every tr > t; > 0 we set

5(ti, 1) = Iim Inn .
! n—oo (tg — t1)P(p(Ayn/t1))
Note that A(ty,t2) > 6(t1, t2), by the right of the inequalities (10).
First we consider the case when for every ¢ € (tg, Tp) the inequality é(c, To) > 1, stronger
than the inequality A(c, Tp) > 1, holds. By Lemma 7, for every fixed ¢ € (tp, Tp) and g € (0,1),
the set E(c, q) of all n € Ny such that simultaneously

on oo (%) o(r(529) 2r0(o(2))

is infinite. Let (cx) be a decreasing to ty sequence of points in (f, Tp) and (g) be a increasing
to 1 sequence of points in (0,1). Choose a sequence (1) of nonnegative integers such that for
every k € Ny the conditions n; € E(cy, qx) and [ng.1/2] > ny hold.

Letn € Ng. Put b, = e~ «®M/c) if 5 € [k /2], ng] for some k € Ny, and let b, = 0, if
n & [[nx/2],ng] for all k € Ny. Consider the Dirichlet series (18) with the coefficients b,. This

series we can write as
My eS/\n

ce =y Y
k=0

n=[ny

_. 20
/2] eckq:'()‘n /ck) ( )

For all n € Ny such that n € [[n/2], ni| for some k € Ny we obtain

S n- = k()= ().

An nbn An (Ck> (Ck>

Since, by Lemma 3, the function D is increasing to A on (xg, +0), we have f(G) = A. Thus,
G € D%()). Furthermore, if ¥ : (Ag, A) — (xp,+0o0) be the inverse function of @ (here

Ap = D(xp +0)), then for all n € [[ny /2], ng] and for every k > ko we have
M
g (Ling)

= Ckg-
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This implies that t¢(G) = to.
If G € Da(A), then it is enough to set a, = by, for all n € Ny, i.e. it is enough to set F = G.
Indeed, if oy = ¢ (A4, /ck), then for each k € INg and for all n € [[ny /2], ni] we have

5 (M) Z g (M) g (M A
ot —aid (51) = oo (57) e (3) + 00 (0 (3))
A
2w (0(G)) 2w (o (7)) 2eme (o (7))

Ny eO'k/\n

and hence

M(cy, G) = G(ox) >
n=[ny/2]

> %eck%‘b(@()\nk/ck)) > eIk(To—ck) 2(@(An/ ) ~In2,ckqk (@ (Any / k) — ok ToP (o) —In2

eck&)()\n /cx)

Therefore, In M (0}, G) > qTo®(0x) — In2 for each k € INy. Since 0y — A, k — 00, we obtain

In M(O’k, G)

To(F) = To(G) > Jim =28

> T() ﬁ qr = T().
k— 00

If G ¢ Da(A), then, by Theorem 8, there exists a Dirichlet series F € D4(A) of the form (2)
such that either a,, = by, or a, = 0 for every n € Ng and F(c) > eT0®() forall ¢ € [0p, A). It is
clear that tg(F) = tg and T (F) > To.

Hence, in the case when for every ¢ € (g, Tp) the inequality 6(c, Tp) > 1 holds the existence
of a Dirichlet series F € D4 () with to(F) = tgand Te(F) > Ty is proved. Now let us consider
the opposite case, i. e. suppose that for some dy € (to, Tp) we have 6(dy, Tp) < 1. Then

A
lnp < (TO — do)q) <g0 <d_§>> —1n3, P = po.

Since, by Lemma 3, the function a(x) = ®(¢(x)) is nondecreasing on [0, +0), for every ¢ €
(to, do] we obtain

Inp < (Tp —c)® <go <%>> —In3, p > po. (21)

By the above assumption, A(c, Tp) > 1 for all ¢ € (ty, Tp). Then from the properties of the
function y = A(t,Tp), t € (0,Tp), described above, it follows that for every ¢ € (ty, Tp) the
stronger inequality A(c, Tp) > 1 holds.

Let (cx) be a decreasing to ty sequence of points in (to, cg]. Since A(ck, To) > 1 for every
k € Ny, there exists a sequence (1) of nonnegative integers such that nyp > 2p and for all
k € INo we have [n,1/2] > ny and

~ (A ~ (A
Inng > cd <ﬂ> — To® <ﬂ> . (22)
Ck To

Let n € Ny. Put b, = e‘ck&’()‘"/ck), if n € [[ng/2],ng] for k € Ny, and let b, = 0, if
n ¢ [[ng/2],ng] for every k € INy. Consider the Dirichlet series (18) with the coefficients
by. This series we can write in the form (20). Arguing as above, we see that f(G) = A and

to(G) = to.
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Using (21) with ¢ = ¢ and p = [n, /2] and also (22), for each k € INy we obtain
A ~ (A ~ (A
(To — cx)P <q0 <M>> > In [@} +1In3 > Inng > ;P <ﬂ> — TP <ﬂ>
Cy 2 Cy TO

[o(r (7)) az e (o)

Ans2) _ Am
Ck TO
Put o = @(Ay, /To). Then for every k € Ny and for all n € [[ny/2], ng], using (22), the
monotonicity of the function ¢, and (23), we have

OeAn — D <ﬂ> =A@ <@> — @ <ﬂ> — Ty® (go <ﬁ>> + To®(oy)
Ck T() Ck TO
_ )\nk A An = Ank
7)o

~ (A
—> + ;P <%> — Inny + Ty®(oy)
k

and thus
(23)

D
)\nk/Ck
+ ck/ ¢(x)dx — Inny + ToP (o)

A
e ﬁ) ¢ <ﬁ> — Inny + To®(oy)
Ck Ck Ck

= =2 (9 (52) — 0 () - e+ o)

> —Inng + To® (o).

If G € Da(A), then it is enough to set a, = by, for all n € Ny, i.e. it is enough to set F = G.
Indeed, in this case for every k € INy we obtain

3 oxA
eVk/\n > ﬂei In ng+To® (o) — eTo‘b(O'k)*h’lz

M(o,G) = Glo) > Y~ >3

n=[nc/2]

Hence, In M(oy, G) > To®P(0y) — In2 for all k € INy. Since 0y — A, k — oo, we have Te(F) =
To(G) = To.

If G ¢ Da(A), then, by Theorem 8, there exists a Dirichlet series F € D 4(A) of the form (2)

such that either a,, = b, or a, = 0 for every n € Ny and F(c) > eT0®() for all ¢ € [0y, A). It is

clear that to(F) = tg and T (F) > Tp. 0

Proof of Theorem 2. Let A € A, A € (—oo,+00], and ® € Q4. Suppose that the condition (11)
holds and consider a Dirichlet series F € D% (A) such that tg(F) < 400. Set fg = te(F). Let
To > to and ¢ € (o, Tp) be fixed numbers. Using the condition (11) with t = Tj and left of the
inequalities (10), for all n > ny we obtain

e Bt (o (1)) <3 (@ (%) -0 (3)

and thus A(c, Tp) < 1/2 < 1. By Theorem 6, the series F belong to the class D4 (A) and for this
series the inequality Te(F) < Tp holds. Since Ty > ty is arbitrary, this inequality implies that
Tcp(F) :tq)(F>. O
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Proof of Theorem 1. In view of Theorem 2, it remains only to prove the necessity of the condition
(11). Suppose that this condition is false, i. e. there exist positive constants ¢y and J such that

— Inn
5 B0 /1)) &

Set Ty = tp + 6. Then, using the right of the inequalities (10), for every ¢ € (o, Tp) we obtain

()-8 () -0 (o (2)) 10 (o (2)). o0

Together with (24) this implies that A(c, Tp) > 1 for every ¢ € (ty, Tp). Then, by Theorem 5,
there exists a Dirichlet series F € Dy4(A) such that t¢(F) = tp and Te(F) > Ty > to. This
completes the proof of Theorem 1. O
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Hexait & — Taka HemepepBHa Ha [0p, A) dyrkiis, mo $(0) — +oo, sxmo ¢ — A — 0, ae
A € (—00,+00]. 3HaiiaeHO HeOOXiAHY i AOCTATHIO YMOBY Ha HEBiA'€MHY 3pOCTalOUy AO +00 IOCAI-
AOBHICTB (A)5), 32 SIKOT AASI KOXKHOTO abCOAIOTHO 36iKHOTO0 B HmiBImAOIIMHI Res < A psiay Aipixae
Burasiay F(s) = Y00 o ane’, s = o + it, BAKOHY€TbCS CTTiBBi AHOIICHHST

—1 F) —1 F
lim n M, F) = lim nplo, ),
atA  D(0) ata  ®(0)
ae M(c,F) = sup{|F(s)| : Res = ¢} i u(o,F) = max{|aye’ : n > 0} — MakcumyM MOAyAS i
MaKCMMAABHIMI YAEH IbOTO PSIAY BiAIIOBiAHO.
Kontouosi cnoea i ppasu: psia Aipixae, MaKCMyM MOAYAS, MaKCMMAaABHIIA UA€H, y3ararbHEeHMI
TUIL



