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GENERALIZED TYPES OF THE GROWTH OF DIRICHLET SERIES

Let Φ be a continuous function on [σ0, A) such that Φ(σ) → +∞ as σ → A − 0, where A ∈

(−∞,+∞]. We establish a necessary and sufficient condition on a nonnegative sequence λ = (λn),

increasing to +∞, under which the equality

lim
σ↑A

ln M(σ, F)

Φ(σ)
= lim

σ↑A

ln µ(σ, F)

Φ(σ)

holds for every Dirichlet series of the form F(s) = ∑
∞
n=0 anesλn , s = σ + it, which is absolutely

convergent in the half-plane Re s < A. Here M(σ, F) = sup{|F(s)| : Re s = σ} and µ(σ, F) =

max{|an|eσλn : n ≥ 0} are the maximum modulus and maximal term of this series respectively.
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INTRODUCTION

Let N0 be the set of all nonnegative integer numbers, R = R ∪ {−∞,+∞}, Λ be the class

of all nonnegative sequences λ = (λn), increasing to +∞, A ∈ (−∞,+∞], and ΩA be the class

of all continuous functions Φ on [σ0, A), such that

∀x ∈ R : lim
σ↑A

(xσ − Φ(σ)) = −∞. (1)

Note that in the case A < +∞ the condition (1) is equivalent to the condition Φ(σ) → +∞,

σ → A − 0, and in the case A = +∞ this condition is equivalent to the condition Φ(σ)/σ →

+∞, σ → +∞.

For a sequence λ ∈ Λ let

τ(λ) = lim
n→∞

ln n

λn
.

Consider a Dirichlet series of the form

F(s) =
∞

∑
n=0

anesλn , s = σ + it, (2)

and put

E1(F) =

{
σ ∈ R :

∞

∑
n=0

|an|e
σλn < +∞

}
, E2(F) =

{
σ ∈ R : lim

n→∞
|an|e

σλn = 0
}

,

σa(F) =

{
−∞, if E1(F) = ∅,

sup E1(F), if E1(F) 6= ∅,
β(F) =

{
−∞, if E2(F) = ∅,

sup E2(F), if E2(F) 6= ∅
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(σa(F) is the abscissa of absolute convergence for the Dirichlet series (2)).

It is easy to show that

β(F) = lim
n→∞

1

λn
ln

1

|an|
.

Also, it is well known (see, for example, [7, p. 114–115]), that

σa(F) ≤ β(F) ≤ σa(F) + τ(λ)

and these inequalities are sharp (more precisely, for every A, B ∈ R such that A ≤ B ≤

A+ τ(λ) there exists [3] a Dirichlet series F of the form (2) such that σa(F) = A and β(F) = B).

If σa(F) > −∞, then for each σ < σa(F) let M(σ, F) = sup{|F(s)| : Re s = σ} be the

maximum modulus of the series (2). If β(F) > −∞, then for each σ < β(F) let µ(σ, F) =

max{|an|eσλn : n ∈ N0} be the maximal term of this series. As is well known, in the case

σa(F) > −∞ we have µ(σ, F) ≤ M(σ, F) for all σ < σa(F).

By DA(λ) we denote the class of all Dirichlet series of the form (2) such that σa(F) ≥ A.

Put DA = ∪λ∈ΛDA(λ). For Φ ∈ ΩA and F ∈ DA, the value

TΦ(F) = TΦ,A(F) = lim
σ↑A

ln M(σ, F)

Φ(σ)

will be called Φ-type of the series F in the half-plane {s : Re s < A}.

By D∗
A(λ) we denote the class of all Dirichlet series of the form (2) such that β(F) ≥ A. Set

D∗
A = ∪λ∈ΛD

∗
A(λ). For Φ ∈ ΩA and F ∈ D∗

A we put

tΦ(F) = tΦ,A(F) = lim
σ↑A

ln µ(σ, F)

Φ(σ)
.

If F ∈ DA, then µ(σ, F) ≤ M(σ, F) for each σ < A, so tΦ(F) ≤ TΦ(F).

Note that DA(λ) ⊂ D∗
A(λ) for every sequence λ ∈ Λ. From what has been said above it fol-

lows that in the case A < +∞ we have DA(λ) = D∗
A(λ) if and only if τ(λ) = 0. Furthermore,

D+∞(λ) = D∗
+∞(λ) if and only if τ(λ) < +∞. It is clear that DA ⊂ D∗

A and DA 6= D∗
A.

The notion of Φ-type generalizes the classical notion of the type for entire Dirichlet series.

Let F be an entire Dirichlet series, i. e. F ∈ D+∞, and ρ be a fixed positive number. Recall

that

T(F) = lim
σ↑+∞

ln M(σ, F)

eρσ

is called the type of the series F. If λ ∈ Λ and τ(λ) = 0, then the type of every entire Dirichlet

series of the form (2) can be calculated (see, for example, [7, p. 178]) by the formula

T(F) = lim
n→∞

λn

eρ
|an|

ρ
λn . (3)

Let Φ ∈ ΩA. The function

Φ̃(x) = sup{xσ − Φ(σ) : σ ∈ [σ0, A)}, x ∈ R,

is said to be Young conjugate to Φ (see, for example, [1, pp. 86–88]). The following properties

of the function Φ̃ are well known (see also Lemmas 2 and 3 below): Φ̃ is convex on R; if ϕ is

the right-hand derivative of Φ̃, then Φ̃(x) = xϕ(x) − Φ(ϕ(x)), x ∈ R, ϕ(x) < A on R and
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ϕ(x) ր A as x ↑ +∞; if x0 = inf{x > 0 : Φ(ϕ(x)) > 0}, then the function Φ(x) = Φ̃(x)/x

increase to A on (x0,+∞). Since Φ̃ is convex on R, Φ̃ is continuous on R. Thus, the function

Φ is continuous on (x0,+∞). Let A0 = Φ(x0 + 0) and ψ : (A0, A) → (x0,+∞) be the inverse

function of Φ. Set ψ(σ) = +∞ for σ ∈ [A,+∞]. Let F ∈ D∗
A be a Dirichlet series of the form

(2). Then β(F) ≥ A, so that
1

λn
ln

1

|an|
≥ A0, n ≥ n0.

Let t > 0 be a fixed number and h(σ) = tΦ(σ), σ ∈ [σ0, A). Then h̃(x) = tΦ̃(x/t), x ∈ R, and

hence h̃(x) = xΦ(x/t), x ≥ tx0. Using Lemma 5, given below, we obtain

tΦ(F) = lim
n→∞

λn

ψ
(

1
λn

ln 1
|an|

) . (4)

Therefore, for every Dirichlet series F ∈ D∗
A of the form (2) we have (4). Consequently, if

F ∈ DA is a Dirichlet series of the form (2) such that TΦ(F) = tΦ(F), then Φ-type of this series

can be calculated by the formula

TΦ(F) = lim
n→∞

λn

ψ
(

1
λn

ln 1
|an|

) . (5)

Note, that in the classical case, considered above (A = +∞, Φ(σ) = eρσ), the formula (5)

coincides with the formula (3). In this connection the following problem arises.

Problem 1. Let λ ∈ Λ, Φ ∈ ΩA. Find a necessary and sufficient condition on the sequence λ

and the function Φ under which TΦ(F) = tΦ(F) for every Dirichlet series F ∈ DA.

In particular cases Problem 1 is solved in [2, 4, 5, 8, 6]. Denote by Ω∗
A the class of all

function Φ ∈ ΩA, convex on [σ0, A). If Φ ∈ Ω∗
A, then the one-sided derivatives Φ′

− and Φ′
+ are

nondecreasing functions on [σ0, A) and Φ′
−(σ) → +∞, x ↑ A. Besides, using the definition of

the function Φ̃ and Lemma 3, given below, it is easy to prove that

Φ′
−(ϕ(x)) ≤ x ≤ Φ′

+(ϕ(x)), x > x0 := Φ′
+(σ0). (6)

The solution of Problem 1, in the case of the sequence λ = (n) and an arbitrary function

Φ ∈ Ω∗
A, was obtained practically in [2, 4] for A = +∞ and in [5] for every A ∈ (−∞,+∞]

(actually, the growth of power series was investigated in [2, 4, 5]). We state a result from [5] in

the following equivalent formulation.

Theorem A. Let λ = (n), A ∈ (−∞,+∞], and Φ ∈ Ω∗
A. Then for every Dirichlet series

F ∈ DA(λ) the equality TΦ(F) = tΦ(F) holds if and only if

ln Φ′
+(σ) = o(Φ(σ)), σ ↑ A.

Let Φ : [σ0, A) → R be a continuously differentiable function from the class Ω∗
A such that

Φ′ is a positive function, increasing on [σ0, A). From (6) it follows that the restriction of the

right-hand derivative ϕ of the function Φ̃ to (x0,+∞) is the inverse function of Φ′. Put

Ψ(σ) = σ −
Φ(σ)

Φ′(σ)
, σ ∈ [σ0, A).
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(As is well known, the function Ψ is called the Newton transform of Φ.) It is easy to see that

Ψ(ϕ(x)) = Φ(x), x ∈ [x0,+∞). For a sequence λ ∈ Λ, let nλ(x) = ∑λn≤x 1 be its counting

function. The next theorem was proved by M. M. Sheremeta [8].

Theorem В. Let λ ∈ Λ, A ∈ (−∞,+∞], Φ ∈ Ω∗
A be a twice continuously differentiable func-

tion on [σ0, A) such that Φ′(σ)/Φ(σ) ր +∞ and ln Φ′(σ) = o(Φ(σ)) as σ ↑ A. Then for every

Dirichlet series F ∈ DA(λ) the inequality tΦ(F) ≤ 1 implies the inequality TΦ(F) ≤ 1 if and

only if

ln nλ(x) = o(Φ(Ψ(ϕ(x)))), x → +∞. (7)

Remark 1. We can rewrite (7) in the form

ln nλ(x) = o(Φ(Φ(x))), x → +∞.

Furthermore, as is easily seen, the condition (7) is equivalent to each of the conditions

ln nλ(Φ
′(σ)) = o(Φ(Ψ(σ))), σ ↑ A;

ln n = o(Φ(Φ(λn))), n → ∞.

Remark 2. The sufficiency of the condition (7) in Theorem B was proved in [8] only by the

condition that Φ ∈ Ω∗
A is a twice continuously differentiable function such that the function

Φ′/Φ is nondecreasing on [σ0, A).

Let t ∈ (0,+∞) be a fixed number. If Φ satisfy the conditions of Theorem B, then the

function tΦ also satisfy these conditions. Applying Theorem B with tΦ instead of Φ and taking

into account Remark 1, we see that TΦ(F) = tΦ(F) for every Dirichlet series F ∈ DA(λ) if an

only if

∀t > 0 : ln n = o(Φ(Φ(λn/t))), n → ∞. (8)

Note also that Theorem B does not imply Theorem A. In addition, Theorem B does not give

the answer to the next question: whether the condition τ(λ) = 0 is necessary in order that (3)

holds for every entire Dirichlet series of the form (2)? Note, that the positive answer to this

question was obtained in [6].

In connection with Theorem В the next problem arises.

Problem 2. Let T0 ≥ t0 ≥ 0 be arbitrary constants, λ ∈ Λ, and Φ ∈ ΩA. Find a necessary

and sufficient condition on the sequence λ and the function Φ under which for every Dirichlet

series F ∈ DA such that tΦ(F) = t0 the inequality TΦ(F) ≤ T0 holds.

In this article we obtain the complete solutions of Problems 1 and 2.

1 THE STATEMENT OF MAIN RESULTS

For a sequence λ ∈ Λ, a function Φ ∈ ΩA and every t2 > t1 > 0 we put

∆(t1, t2) = ∆Φ,λ(t1, t2) = lim
n→∞

ln n

t1Φ̃(λn/t1)− t2Φ̃(λn/t2)
.

First we mention some properties of ∆(t1, t2).
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If d is a fixed number, then for the function γ(t) = tΦ̃(d/t), t ∈ R\{0}, we have

γ′
+(t) = Φ̃

(
d

t

)
−

d

t
ϕ

(
d

t

)
= −Φ

(
ϕ

(
d

t

))
.

Hence,

t1Φ̃

(
d

t1

)
− t2Φ̃

(
d

t2

)
=
∫ t2

t1

Φ

(
ϕ

(
d

t

))
dt. (9)

Let a > 0 be a fixed number. Consider the function y = ∆(a, t), t ∈ (a,+∞). Using (9),

Lemmas 2 and 6, given below, and taking into account that the function α(x) = Φ(ϕ(x)) is

positive on (x0,+∞), for every t2 > t1 > a we obtain

0 ≤ y(t2) ≤ y(t1) ≤
t2 − a

t1 − a
y(t2).

It follows from this that the next three cases are possible: the function y is identically equal to

0; the function y is identically equal to +∞; the function y is positive continuous nonincreasing

on (a,+∞).

Let b > 0 be a fixed number. Consider the function y = ∆(t, b), t ∈ (0, b). Using again

Lemma 6, for every 0 < t1 < t2 < b we obtain

0 ≤ y(t1) ≤
b − t2

b − t1
y(t2).

This implies that if y(t2) = 0 for some t2 ∈ (0, b), then y(t) = 0 on (0, t2]; if y(t1) = +∞ for

some t1 ∈ (0, b), then y(t) = +∞ on [t1, b); if the function y does not take the value 0 and +∞

at some point t ∈ (0, b), then this function increase at the point t.

Note also that the function α(x) = Φ(ϕ(x)) is nondecreasing on [0,+∞), by Lemma 3,

given below. Consequently, from (9), for every d ≥ 0 and t2 > t1 > 0, we have

(t2 − t1)Φ

(
ϕ

(
d

t2

))
≤ t1Φ̃

(
d

t1

)
− t2Φ̃

(
d

t2

)
≤ (t2 − t1)Φ

(
ϕ

(
d

t1

))
. (10)

The solution of Problem 1 is contained in the following theorem.

Theorem 1. Let λ ∈ Λ, A ∈ (−∞,+∞], and Φ ∈ ΩA. Then for every Dirichlet series F ∈

DA(λ) the equality TΦ(F) = tΦ(F) holds if and only if

∀t > 0 : ln n = o(Φ(ϕ(λn/t))). (11)

Remark 3. The conditions (8) and (11) are equivalent for every function Φ ∈ Ω∗
A. This fact

follows from the inequalities

(1 − q)Φ(ϕ(qx)) ≤ Φ(Φ(x)) < Φ(ϕ(x)), (12)

which hold for every fixed q ∈ (0, 1) and all large enough x (see Lemma 8 below).

Note also that if F ∈ DA(λ) and tΦ(F) = +∞, then TΦ(F) = +∞, by the inequality

µ(σ, F) ≤ M(σ, F), σ < A, so that TΦ(F) = tΦ(F). In this connection, the next theorem

makes more precise Theorem 1 in the part of the sufficiency of (11).
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Theorem 2. Let λ ∈ Λ, A ∈ (−∞,+∞], and Φ ∈ ΩA. If the condition (11) holds, then every

Dirichlet series F from the class D∗
A(λ) such that tΦ(F) < +∞ belong to the class DA(λ) and

for this series we have TΦ(F) = tΦ(F).

The solution of Problem 2 is contained in the following theorem.

Theorem 3. Let λ ∈ Λ, A ∈ (−∞,+∞], Φ ∈ ΩA, and T0 ≥ t0 ≥ 0 be arbitrary constants. Then

for every Dirichlet series F ∈ DA(λ) such that tΦ(F) = t0 the inequality TΦ(F) ≤ T0 holds if

and only if

∀T > T0 ∃c ∈ (t0, T) : ∆(c, T) < 1. (13)

By Theorem 3, for every Dirichlet series F ∈ DA(λ) the inequality tΦ(F) ≤ 1 implies the

inequality TΦ(F) ≤ 1 if and only if

∀T > 1 ∃c ∈ (1, T) : ∆(c, T) < 1. (14)

If A = +∞ and Φ(σ) = σ ln σ, σ ≥ e, then, as is easy to show, the condition (14) becomes

lim
n→∞

ln ln n

λn
< 1,

but the condition (7) from Theorem B takes the form

ln n = o(eλn), n → ∞.

Hence, generally, the condition (14) does not coincide with the condition (7).

In the part of the sufficiency of (13) the Theorem 3 can be made more precise.

Theorem 4. Let λ ∈ Λ, A ∈ (−∞,+∞], Φ ∈ ΩA, and T0 ≥ t0 ≥ 0 be arbitrary constants. If the

condition (13) holds, then every Dirichlet series F from the class D∗
A(λ) such that tΦ(F) = t0

belong to the class DA(λ) and for this series we have TΦ(F) ≤ T0.

Theorems 3 and 4 follow immediately from Theorems 5 and 6, given below, respectively.

Theorem 5. Let λ ∈ Λ, A ∈ (−∞,+∞], Φ ∈ ΩA, and T0 > t0 ≥ 0 be arbitrary constants. Then

for every Dirichlet series F ∈ DA(λ) such that tΦ(F) = t0 the inequality TΦ(F) < T0 holds if

and only if

∃c ∈ (t0, T0) : ∆(c, T0) < 1. (15)

Theorem 6. Let λ ∈ Λ, A ∈ (−∞,+∞], Φ ∈ ΩA, and T0 > t0 ≥ 0 be arbitrary constants. If the

condition (15) holds, then every Dirichlet series F from the class D∗
A(λ) such that tΦ(F) = t0

belong to the class DA(λ) and for this series we have TΦ(F) < T0.

Theorem 6 follows from the next more general result.

Theorem 7. Let λ ∈ Λ, A ∈ (−∞,+∞], and Φ, Γ ∈ ΩA. If

∞

∑
n=0

1

eΦ̃(λn)−Γ̃(λn)
< +∞, (16)

then every Dirichlet series F from the class D∗
A(λ) such that ln µ(σ, F) ≤ Φ(σ), σ ∈ [σ1, A),

belong to the class DA(λ) and for this series we have ln M(σ, F) ≤ Γ(σ), σ ∈ [σ2, A).
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2 AUXILIARY RESULTS

Denote by X the class of all functions h : R → R. Suppose h ∈ X and let h̃ ∈ X be the

Young conjugate function to h, i. e.

h̃(σ) = sup{σx − h(x) : x ∈ R}, σ ∈ R.

It is clear that if h, g ∈ X and h(x) ≥ g(x) for all x ∈ R, then h̃(σ) ≤ g̃(σ) for all σ ∈ R.

Let h ∈ X. Then
˜̃
h(x) ≤ h(x) for each x ∈ R, where

˜̃
h is the Young conjugate function to

h̃. Indeed, the definition of h̃ implies that for every σ, x ∈ R the inequality σx − h(x) ≤ h̃(σ)

holds. Then xσ − h̃(σ) ≤ h(x) for every σ, x ∈ R. From this it follows that ˜̃h(x) ≤ h(x) for

each x ∈ R.

Lemma 1. Let h, g ∈ X. Then the following conditions are equivalent:

(i) h̃(σ) ≤ g(σ) for all σ ∈ R;

(ii) h(x) ≥ g̃(x) for all x ∈ R.

Proof. If the condition (i) holds, then ˜̃h(x) ≥ g̃(x) for each x ∈ R. Since ˜̃h(x) ≤ h(x) for all

x ∈ R, from this it follows (ii).

If the condition (ii) holds, then h̃(σ) ≤ ˜̃g(σ) for each σ ∈ R. Since ˜̃g(σ) ≤ g(σ) for all

σ ∈ R, from this it follows (i).

Lemma 2. Let h ∈ X. Then h̃ is a convex function on R, i. e. for every x1, x2, x3 ∈ R such that

x1 ≤ x2 ≤ x3 we have

h̃(x2)(x3 − x1) ≤ h̃(x1)(x3 − x2) + h̃(x3)(x2 − x1). (17)

Proof. For each t ∈ R we have

(tx2 − h(t))(x3 − x1) = (tx1 − h(t))(x3 − x2) + (tx3 − h(t))(x2 − x1).

From this equality and the definition of h̃ we have (17).

For a function h ∈ X we put Dh = {x ∈ R : h(x) < +∞}. It is clear that in the definition of

h̃(σ) we can take the supremum by all x ∈ Dh instead the supremum by all x ∈ R.

Let A ∈ (−∞,+∞] and Φ : [σ0, A) → R be a function from the class ΩA. We assume

that the function Φ belong to the class X, setting Φ(σ) = +∞ for every σ /∈ [σ0,+∞) (then

DΦ = [σ0,+∞)). Fix some x ∈ R and set

y(σ) = xσ − Φ(σ), σ ∈ [σ0, A).

The function y is continuous on [σ0, A). In addition, by (1), y(σ) → −∞ as σ ↑ A. Hence, this

function assumes its supremum on [σ0, A), i. e.

Φ̃(x) = max
σ≥σ0

y(σ).

Consider the set

S(x) = {σ ≥ σ0 : y(σ) = Φ̃(x)}.
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From what has been said it follows that the set S(x) is nonempty and bounded. Let ϕ(x) =

sup S(x). Then ϕ(x) ∈ S(x), i. e. max S(x) exists and ϕ(x) = max S(x). Indeed, if we assume

that ϕ(x) /∈ S(x), then the set S(x) is infinite and σ < ϕ(x) for every σ ∈ S(x). Let (σn) be

a sequence of points in S(x), increasing to ϕ(x). For every n ∈ N0 we have y(σn) = Φ̃(x).

Letting n to ∞ and using the continuity of the function Φ, we obtain y(ϕ(x)) = Φ̃(x), i. e.

ϕ(x) ∈ S(x), but this contradicts the assumption that ϕ(x) /∈ S(x). Hence, max S(x) exists and

ϕ(x) = max S(x).

Lemma 3. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and ϕ(x) = max{σ ∈ [σ0, A) : xσ − Φ(σ) = Φ̃(x)},

x ∈ R. Then:

(i) the function ϕ is nondecreasing on R;

(ii) the function ϕ is continuous from the right on R;

(iii) ϕ(x) → A, x → +∞;

(iv) the right-hand derivative of Φ̃(x) is equal to ϕ(x) at every point x ∈ R;

(v) if x0 = inf{x > 0 : Φ(ϕ(x)) > 0}, then the function Φ(x) = Φ̃(x)/x increase to A on

(x0,+∞);

(vi) the function α(x) = Φ(ϕ(x)) is nondecreasing on [0,+∞).

Proof. (i) Let x1 < x2. Since xj ϕ(xj)− Φ(ϕ(xj)) = Φ̃(xj), j ∈ {1, 2}, the definition of Φ̃ implies

the following inequalities

x1ϕ(x1)− Φ(ϕ(x1)) ≥ x1 ϕ(x2)− Φ(ϕ(x2)), x2ϕ(x2)− Φ(ϕ(x2)) ≥ x2 ϕ(x1)− Φ(ϕ(x1)).

Adding these inequalities, we obtain (ϕ(x2)− ϕ(x1))(x2 − x1) ≥ 0. From this it follows that

ϕ(x1) ≤ ϕ(x2).

(ii) Let x0 ∈ R be a fixed point. By (i) it follows that the right-hand limit ϕ(x0 + 0) exists

and ϕ(x0 + 0) ≥ ϕ(x0). Let us prove that ϕ(x0 + 0) = ϕ(x0), i. e. that ϕ is continuous from the

right at the point x0. Indeed, the definition of Φ̃ implies the inequality

xϕ(x0)− Φ(ϕ(x0)) ≤ xϕ(x)− Φ(ϕ(x)).

Letting x to x0 from the right, we obtain Φ̃(x0) ≤ x0ϕ(x0 + 0)− Φ(ϕ(x0 + 0)). On the other

hand, Φ̃(x0) ≥ x0ϕ(x0 + 0) − Φ(ϕ(x0 + 0)). Hence, Φ̃(x0) = x0 ϕ(x0 + 0) − Φ(ϕ(x0 + 0)).

Then from the definition of ϕ we obtain ϕ(x0 + 0) ≤ ϕ(x0) and thus ϕ(x0 + 0) = ϕ(x0).

(iii) Suppose the contrary, that is ϕ(+∞) = B < A. Let C ∈ (B, A). Using the definition of

the function Φ̃, we have

xC − Φ(C) ≤ xϕ(x)− Φ(ϕ(x))

for every x ∈ R. This implies that

x(C − ϕ(x)) ≤ Φ(C)− Φ(ϕ(x)).

Letting x to +∞, we obtain +∞ ≤ Φ(C)− Φ(B), but this is impossible.

(iv) Let x ∈ R be a fixed point and h > 0. From the definition of the function Φ̃ we have

Φ̃(x + h)− Φ̃(x)

h
≥

(x + h)ϕ(x)− Φ(ϕ(x))− Φ̃(x)

h
= ϕ(x),

Φ̃(x + h)− Φ̃(x)

h
≤

Φ̃(x + h)− (xϕ(x + h)− Φ(ϕ(x + h)))

h
= ϕ(x + h).
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Hence,

ϕ(x) ≤
Φ̃(x + h)− Φ̃(x)

h
≤ ϕ(x + h).

Letting h to 0 and using (ii), we see that the right-hand derivative of Φ̃(x) is equal to ϕ(x).

(v) Since xϕ(x)− Φ̃(x) = Φ(ϕ(x)) > 0 for x > x0,

(Φ(x))′+ =
xϕ(x)− Φ̃(x)

x2
> 0, x > x0.

Hence, the function Φ(x) increase on (x0,+∞). Furthermore, the inequality xϕ(x)− Φ̃(x) > 0,

x > x0, implies that Φ(x) < ϕ(x) < A, x > x0. On the other hand, for every fixed x1 and each

x ≥ x1 we have

Φ̃(x) = Φ̃(x1) +
∫ x

x1

ϕ(t)dt ≥ Φ̃(x1) + (x − x1)ϕ(x1).

From this it follows that

lim
x→+∞

Φ(x) ≥ ϕ(x1).

Letting x1 to +∞, we see that Φ(x) → A, x → +∞.

(vi) Let x2 > x1 ≥ 0. Then

α(x2)− α(x1) = x2ϕ(x2)− x1 ϕ(x1) + Φ̃(x1)− Φ̃(x2) ≥ x2 ϕ(x2)− x1 ϕ(x1) + (x1 − x2)ϕ(x2)

= x1(ϕ(x2)− ϕ(x1)) ≥ 0.

Therefore, the function α(x) = Φ(ϕ(x)) is nondecreasing on [0,+∞).

Lemma 4. Let A ∈ (−∞,+∞], Φ1, Φ2 ∈ ΩA, and Φ1(σ) = Φ2(σ) for all σ ∈ [σ0, A). Then

Φ̃1(x) = Φ̃2(x) for each x ≥ x0.

Proof. For j ∈ {1, 2} let DΦj
= [σj, A) and

ϕj(x) = max{σ ∈ [σj, A) : xσ − Φj(σ) = Φ̃j(x)}, x ∈ R.

Lemma 3 implies that min{ϕ1(x), ϕ2(x)} ≥ max{σ0, σ1, σ2} for all x ≥ x0. Then for every

x ≥ x0 we get

Φ̃1(x) = xϕ1(x)− Φ1(ϕ1(x)) = xϕ1(x)− Φ2(ϕ1(x)) ≤ max
σ≥σ2

(xσ − Φ2(σ)) = Φ̃2(x),

Φ̃2(x) = xϕ2(x)− Φ2(ϕ2(x)) = xϕ2(x)− Φ1(ϕ2(x)) ≤ max
σ≥σ1

(xσ − Φ1(σ)) = Φ̃1(x),

and, hence, Φ̃1(x) = Φ̃2(x).

Lemma 5. Let A ∈ (−∞,+∞], Φ ∈ ΩA, and F ∈ D∗
A be a Dirichlet series of the form (2). Then

ln µ(σ, F) ≤ Φ(σ) for each σ ∈ [σ0, A) if and only if ln |an| ≤ −Φ̃(λn) for all n ≥ n0.

Proof. Suppose that ln µ(σ, F) ≤ Φ(σ) for each σ ∈ [σ0, A). We set Ψ(σ) = Φ(σ) for every

σ ∈ [σ0, A) and Ψ(σ) = +∞ for every σ /∈ [σ0, A). Let h ∈ X be the function such that h(λn) =

− ln |an| for all n ∈ N0 and h(x) = +∞ for all x ∈ R\{λ0, λ1, . . . }. Then ln µ(σ, F) = h̃(σ) for

σ < β(F). Consequently, h̃(σ) ≤ Ψ(σ) for each σ ∈ R. By Lemma 1, h(x) ≥ Ψ̃(x), x ∈ R.

Therefore, using Lemma 4, we have ln |an| = −h(λn) ≤ −Ψ̃(λn) = −Φ̃(λn) for all n ≥ n0.
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Now suppose that ln |an| ≤ −Φ̃(λn) for all n ≥ n0. If the function µ(σ, F) is bounded on

(−∞, A), then, obviously, ln µ(σ, F) ≤ Φ(σ) for each σ ∈ [σ0, A). If the function µ(σ, F) is

unbounded on (−∞, A), then we consider, along with F, the Dirichlet series

G(s) =
∞

∑
n=0

bnesλn , s = σ + it, (18)

such that bn = 0 for n < n0 and bn = an for n ≥ n0. It is easy to show that µ(σ, F) = µ(σ, G)

for each σ ∈ [σ0, A). Besides, ln |bn| ≤ −Φ̃(λn) for all n ∈ N0. Hence, by Lemma 1, we have

ln µ(σ, G) ≤ Φ(σ), σ < A. This implies that ln µ(σ, F) ≤ Φ(σ) for each σ ∈ [σ0, A).

Lemma 6. Let Ψ be a function, convex on R, and x0 ≥ 0. Then for all t1, t2, t3 ∈ R such that

t3 > t2 > t1 > 0 we have

t1Ψ

(
x0

t1

)
− t2Ψ

(
x0

t2

)
≥

t2 − t1

t3 − t1

(
t1Ψ

(
x0

t1

)
− t3Ψ

(
x0

t3

))
,

t2Ψ

(
x0

t2

)
− t3Ψ

(
x0

t3

)
≤

t3 − t2

t3 − t1

(
t1Ψ

(
x0

t1

)
− t3Ψ

(
x0

t3

))
.

Proof. Since Ψ is convex on R, for every t1, t2, t3 ∈ R such that t3 > t2 > t1 > 0 we have the

following inequality

Ψ

(
x0

t2

)(
x0

t1
−

x0

t3

)
≤ Ψ

(
x0

t1

)(
x0

t2
−

x0

t3

)
+ Ψ

(
x0

t3

)(
x0

t1
−

x0

t2

)
.

Multiplying this inequality by t1t2t3, we obtain

Ψ

(
x0

t2

)
t2(t3 − t1) ≤ Ψ

(
x0

t1

)
t1(t3 − t2) + Ψ

(
x0

t3

)
t3(t2 − t1).

From this it follows that

Ψ

(
x0

t1

)
t1(t3 − t1)− Ψ

(
x0

t2

)
t2(t3 − t1) ≥ Ψ

(
x0

t1

)
t1(t3 − t1)− Ψ

(
x0

t1

)
t1(t3 − t2)

− Ψ

(
x0

t3

)
t3(t2 − t1) = Ψ

(
x0

t1

)
t1(t2 − t1)− Ψ

(
x0

t3

)
t3(t2 − t1),

Ψ

(
x0

t2

)
t2(t3 − t1)− Ψ

(
x0

t3

)
t3(t3 − t1) ≤ Ψ

(
x0

t1

)
t1(t3 − t2) + Ψ

(
x0

t3

)
t3(t2 − t1)

− Ψ

(
x0

t3

)
t3(t3 − t1) = Ψ

(
x0

t1

)
t1(t3 − t2)− Ψ

(
x0

t3

)
t3(t3 − t2).

Lemma 6 is proved.

We note, that some of the above properties of the Young conjugate functions are well known

(see, for examle, [1, § 3.2]).

Lemma 7. Let (xn) be a positive sequence such that

lim
n→∞

ln n

xn
= δ ≥ 1.

Then, for every q ∈ (0, 1), the set E(q) = {n ∈ N0 : ln n ≥ qxn ∧ x[n/2] ≥ qxn} is unbounded.
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Proof. If δ = +∞, then, setting mk = min{n ∈ N0 : ln n ≥ (k + 1)xn}, we see that mk ∈ E(q)

for every k ∈ N0. If δ < +∞, then, for some increasing sequence (pk) of nonnegative integers,

we have ln pk ∼ δxpk
, k → ∞. Therefore,

lim
k→∞

xpk

x[pk/2]
=

1

δ
lim
k→∞

ln pk

x[pk/2]
=

1

δ
lim
k→∞

ln[pk/2]

x[pk/2]
≤

1

δ
lim

n→∞

ln n

xn
= 1.

It is clear that pk ∈ Eq for all k ≥ k0(q).

Theorem 8. Let A ∈ (−∞,+∞], λ ∈ Λ be a sequence such that τ(λ) > 0 in the case A < +∞

and τ(λ) = +∞ in the case A = +∞, and G ∈ D∗
A(λ)\DA(λ) be a Dirichlet series of the form

(18) such that bn ≥ 0, n ∈ N0. Then for every positive on (−∞, A) function l there exists a

Dirichlet series F ∈ D(λ) of the form (2) such that either an = bn or an = 0 for every n ∈ N0

and M(σ, F) = F(σ) ≥ l(σ) for all σ ∈ [σ0, A).

Proof. We may assume without loss of generality that the function l is nondecreasing on

(−∞, A).

Since G ∈ D∗
A(λ)\DA(λ), we have β(G) ≥ A and σa(G) < A. The inequality β(G) ≥ A

implies that there exists a sequence (ηn), increasing to A, such that

1

λn
ln

1

bn
≥ ηn, n ∈ N0.

Then bn ≤ e−ηnλn , n ∈ N0. Since σa(G) < A, for all σ ∈ (σa(G), A) and every m ∈ N0 we have

∑
n≥m

bneσλn = +∞.

Fix some sequence (σn), increasing to A. We choose a sequence (mk) of nonnegative inte-

gers to be so rapidly increasing that the inequalities

ηmk
≥ σk, e(σk−σk+1)λmk+1(l(σk+2) + 1) <

1

(k + 1)2
,

mk+1−1

∑
n=mk

bneσkλn ≥ l(σk+1)

hold for every k ∈ N0. Put

pk = min

{
p ≥ mk :

p

∑
n=mk

bneσkλn ≥ l(σk+1)

}
, k ∈ N0.

Note that mk ≤ pk ≤ mk+1 − 1 and

l(σk+1) ≤
pk

∑
n=mk

bneσkλn < l(σk+1) + bpk
eσkλpk ≤ l(σk+1) + e(σk−ηpk

)λpk ≤ l(σk+1) + 1.

Let n ∈ N0. If n ∈ [mk, pk] for some k ∈ N0, then we put an = bn. If n /∈ [mk, pk] for every

k ∈ N0, then let an = 0. Consider the Dirichlet series F of the form (2) and let us prove that

σa(G) ≥ A. Indeed, for every fixed j ∈ N0 we have

∑
n≥mj+1

aneσjλn = ∑
k≥j+1

pk

∑
n=mk

bneσjλn = ∑
k≥j+1

pk

∑
n=mk

bneσkλne(σj−σk)λn

≤ ∑
k≥j+1

e(σj−σk)λmk

pk

∑
n=mk

bneσkλn

≤ ∑
k≥j+1

e(σk−1−σk)λmk (l(σk+1) + 1) < ∑
k≥j+1

1

k2
< +∞,
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so that σa(F) ≥ A. Moreover, if σ ∈ [σ0, A), then σ ∈ [σk, σk+1) for some k ∈ N0 and therefore

F(σ) ≥
pk

∑
n=mk

aneσλn =
pk

∑
n=mk

bneσλn ≥
pk

∑
n=mk

bneσkλn ≥ l(σk+1) ≥ l(σ).

Theorem 8 is proved.

Lemma 8. Let A ∈ (−∞,+∞], Φ ∈ Ω∗
A, and q ∈ (0, 1). Then the inequalities (12) hold for all

x ≥ x0.

Proof. If Φ ∈ Ω∗
A, then the function Φ is increasing on [σ1, A). Since

Φ(x) = ϕ(x)−
Φ(ϕ(x))

x
< ϕ(x), x > x1,

we have Φ(Φ(x)) < Φ(ϕ(x)), x > x2, i. e. the right of the inequalities (12) holds.

Further, using the convexity of the function Φ and the inequalities (6), we have

Φ(ϕ(x))− Φ(ϕ(qx)) ≤ (ϕ(x)− ϕ(qx))Φ′
−(ϕ(x)) ≤ (ϕ(x)− ϕ(qx))x, x > x3,

and, hence, for all x > x4 we obtain

Φ(ϕ(qx)) − Φ(Φ(x)) ≤ (ϕ(qx)− Φ(x))Φ′
−(ϕ(qx)) ≤

(
ϕ(qx)− ϕ(x) +

Φ(ϕ(x))

x

)
qx

≤

(
Φ(ϕ(qx)) − Φ(ϕ(x))

x
+

Φ(ϕ(x))

x

)
qx = qΦ(ϕ(qx)).

This implies the left of the inequalities (12).

3 THE PROOFS OF MAIN RESULTS

Proof of Theorem 7. Let λ ∈ Λ, A ∈ (−∞,+∞], and Φ, Γ ∈ ΩA be functions that satisfy (16).

Consider a Dirichlet series F ∈ D∗
A(λ) of the form (2) such that ln µ(σ, F) ≤ Φ(σ), σ ∈

[σ1, A). By Lemma 5 we have ln |an| ≤ −Φ̃(λn), n ≥ n1.

Fix n2 ≥ n1 such that

∑
n≥n2

1

eΦ̃(λn)−Γ̃(λn)
≤

1

2
.

Then for all σ ∈ [σ2, A) we obtain

∞

∑
n=0

|an|e
σλn = ∑

n<n2

|an|e
σλn + ∑

n≥n2

|an|e
σλn ≤

1

2
eΓ(σ) + ∑

n≥n2

eσλn

eΦ̃(λn)

=
1

2
eΓ(σ) + eΓ(σ) ∑

n≥n2

eσλn−Γ(σ)

eΦ̃(λn)
≤ eΓ(σ)

(
1

2
+ ∑

n≥n2

eΓ̃(λn)

eΦ̃(λn)

)
≤ eΓ(σ).

Hence, σa(F) ≥ A, so that F ∈ DA(λ). Furthermore, ln M(σ, F) ≤ Γ(σ), σ ∈ [σ2, A). ✷

Proof of Theorem 6. Let λ ∈ Λ, A ∈ (−∞,+∞], Φ ∈ ΩA, and T0 > t0 ≥ 0 be some constants.

Assume that the condition (15) holds, i. e. for some c ∈ (t0, T0) we have ∆(c, T0) < 1. Consider

the function y = ∆(c, t), t ∈ (c,+∞). It follows from the properties of this function, described
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above, that there exists a point T ∈ (c, T0) such that ∆(c, T) < 1. Let q ∈ (∆(c, T), 1). Then

there exists n0 ∈ N0 such that

ln n ≤ q

(
cΦ̃

(
λn

c

)
− TΦ̃

(
λn

T

))
, n ≥ n0,

and thus
∞

∑
n=0

1

ecΦ̃(λn/c)−TΦ̃(λn/T)
< +∞. (19)

Consider some Dirichlet series F ∈ D∗
A(λ) such that tΦ(F) = t0. Then tΦ(F) < c, and hence

ln µ(σ, F) ≤ cΦ(σ), σ ∈ [σ1, A). By Theorem 7, in view of (19), the series F belong to the class

DA(λ) and for this series the inequality ln M(σ, F) ≤ TΦ(σ) holds for all σ ∈ [σ2, A), so that

TΦ(F) ≤ T < T0. ✷

Proof of Theorem 5. In view of Theorem 6, it remains only to prove the necessity of the condition

(15).

We suppose that this condition is false, i. e. ∆(c, T0) ≥ 1 for all c ∈ (t0, T0), and prove that

there exists a Dirichlet series F ∈ DA(λ) of the form (2) such that tΦ(F) = t0, but TΦ(F) ≥ T0.

For every t2 > t1 > 0 we set

δ(t1, t2) = lim
n→∞

ln n

(t2 − t1)Φ(ϕ(λn/t1))
.

Note that ∆(t1, t2) ≥ δ(t1, t2), by the right of the inequalities (10).

First we consider the case when for every c ∈ (t0, T0) the inequality δ(c, T0) ≥ 1, stronger

than the inequality ∆(c, T0) ≥ 1, holds. By Lemma 7, for every fixed c ∈ (t0, T0) and q ∈ (0, 1),

the set E(c, q) of all n ∈ N0 such that simultaneously

ln n ≥ q(T0 − c)Φ

(
ϕ

(
λn

c

))
, Φ

(
ϕ

(
λ[n/2]

c

))
≥ qΦ

(
ϕ

(
λn

c

))
,

is infinite. Let (ck) be a decreasing to t0 sequence of points in (t0, T0) and (qk) be a increasing

to 1 sequence of points in (0, 1). Choose a sequence (nk) of nonnegative integers such that for

every k ∈ N0 the conditions nk ∈ E(ck, qk) and [nk+1/2] > nk hold.

Let n ∈ N0. Put bn = e−ckΦ̃(λn/ck), if n ∈ [[nk/2], nk] for some k ∈ N0, and let bn = 0, if

n /∈ [[nk/2], nk] for all k ∈ N0. Consider the Dirichlet series (18) with the coefficients bn. This

series we can write as

G(s) =
∞

∑
k=0

nk

∑
n=[nk/2]

esλn

eckΦ̃(λn/ck)
. (20)

For all n ∈ N0 such that n ∈ [[nk/2], nk] for some k ∈ N0 we obtain

1

λn
ln

1

bn
=

ck

λn
Φ̃

(
λn

ck

)
= Φ

(
λn

ck

)
.

Since, by Lemma 3, the function Φ is increasing to A on (x0,+∞), we have β(G) = A. Thus,

G ∈ D∗
A(λ). Furthermore, if ψ : (A0, A) → (x0,+∞) be the inverse function of Φ (here

A0 = Φ(x0 + 0)), then for all n ∈ [[nk/2], nk] and for every k ≥ k0 we have

λn

ψ
(

1
λn

ln 1
bn

) = ck.
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This implies that tΦ(G) = t0.

If G ∈ DA(λ), then it is enough to set an = bn for all n ∈ N0, i. e. it is enough to set F = G.

Indeed, if σk = ϕ(λnk
/ck), then for each k ∈ N0 and for all n ∈ [[nk/2], nk] we have

σkλn − ckΦ̃

(
λn

ck

)
= λn ϕ

(
λnk

ck

)
− λn ϕ

(
λn

ck

)
+ ckΦ

(
ϕ

(
λn

ck

))

≥ ckΦ

(
ϕ

(
λn

ck

))
≥ ckΦ

(
ϕ

(
λ[nk/2]

ck

))
≥ ckqkΦ

(
ϕ

(
λnk

ck

))
,

and hence

M(σk, G) = G(σk) ≥
nk

∑
n=[nk/2]

eσkλn

eckΦ̃(λn/ck)

≥
nk

2
eckqkΦ(ϕ(λnk

/ck)) ≥ eqk(T0−ck)Φ(ϕ(λnk
/ck))−ln 2eckqkΦ(ϕ(λnk

/ck)) = eqkT0Φ(σk)−ln 2.

Therefore, ln M(σk, G) ≥ qkT0Φ(σk)− ln 2 for each k ∈ N0. Since σk → A, k → ∞, we obtain

TΦ(F) = TΦ(G) ≥ lim
k→∞

ln M(σk, G)

Φ(σk)
≥ T0 lim

k→∞
qk = T0.

If G /∈ DA(λ), then, by Theorem 8, there exists a Dirichlet series F ∈ DA(λ) of the form (2)

such that either an = bn or an = 0 for every n ∈ N0 and F(σ) ≥ eT0Φ(σ) for all σ ∈ [σ0, A). It is

clear that tΦ(F) = t0 and TΦ(F) ≥ T0.

Hence, in the case when for every c ∈ (t0, T0) the inequality δ(c, T0) ≥ 1 holds the existence

of a Dirichlet series F ∈ DA(λ) with tΦ(F) = t0 and TΦ(F) ≥ T0 is proved. Now let us consider

the opposite case, i. e. suppose that for some d0 ∈ (t0, T0) we have δ(d0, T0) < 1. Then

ln p < (T0 − d0)Φ

(
ϕ

(
λp

d0

))
− ln 3, p ≥ p0.

Since, by Lemma 3, the function α(x) = Φ(ϕ(x)) is nondecreasing on [0,+∞), for every c ∈

(t0, d0] we obtain

ln p < (T0 − c)Φ

(
ϕ

(
λp

c

))
− ln 3, p ≥ p0. (21)

By the above assumption, ∆(c, T0) ≥ 1 for all c ∈ (t0, T0). Then from the properties of the

function y = ∆(t, T0), t ∈ (0, T0), described above, it follows that for every c ∈ (t0, T0) the

stronger inequality ∆(c, T0) > 1 holds.

Let (ck) be a decreasing to t0 sequence of points in (t0, c0]. Since ∆(ck, T0) > 1 for every

k ∈ N0, there exists a sequence (nk) of nonnegative integers such that n0 ≥ 2p0 and for all

k ∈ N0 we have [nk+1/2] > nk and

ln nk > ckΦ̃

(
λnk

ck

)
− T0Φ̃

(
λnk

T0

)
. (22)

Let n ∈ N0. Put bn = e−ckΦ̃(λn/ck), if n ∈ [[nk/2], nk] for k ∈ N0, and let bn = 0, if

n /∈ [[nk/2], nk] for every k ∈ N0. Consider the Dirichlet series (18) with the coefficients

bn. This series we can write in the form (20). Arguing as above, we see that β(G) = A and

tΦ(G) = t0.



186 HLOVA T.YA., FILEVYCH P.V.

Using (21) with c = ck and p = [nk/2] and also (22), for each k ∈ N0 we obtain

(T0 − ck)Φ

(
ϕ

(
λ[nk/2]

ck

))
> ln

[nk

2

]
+ ln 3 > ln nk > ckΦ̃

(
λnk

ck

)
− T0Φ̃

(
λnk

T0

)

=
∫ T0

ck

Φ

(
ϕ

(
λnk

t

))
dt ≥ (T0 − ck)Φ

(
ϕ

(
λnk

T0

))

and thus
λ[nk/2]

ck
>

λnk

T0
. (23)

Put σk = ϕ(λnk
/T0). Then for every k ∈ N0 and for all n ∈ [[nk/2], nk], using (22), the

monotonicity of the function ϕ, and (23), we have

σkλn − ckΦ̃

(
λn

ck

)
= λn ϕ

(
λnk

T0

)
− ckΦ̃

(
λn

ck

)
− T0Φ

(
ϕ

(
λnk

T0

))
+ T0Φ(σk)

= (λn − λnk
)ϕ

(
λnk

T0

)
− ckΦ̃

(
λn

ck

)
+ T0Φ̃

(
λnk

T0

)
+ T0Φ(σk)

> (λn − λnk
)ϕ

(
λnk

T0

)
− ckΦ̃

(
λn

ck

)
+ ckΦ̃

(
λnk

ck

)
− ln nk + T0Φ(σk)

= (λn − λnk
)ϕ

(
λnk

T0

)
+ ck

∫ λnk
/ck

λn/ck

ϕ(x)dx − ln nk + T0Φ(σk)

≥ (λn − λnk
)ϕ

(
λnk

T0

)
+ ck

(
λnk

ck
−

λn

ck

)
ϕ

(
λn

ck

)
− ln nk + T0Φ(σk)

= (λnk
− λn)

(
ϕ

(
λn

ck

)
− ϕ

(
λnk

T0

))
− ln nk + T0Φ(σk)

≥ − ln nk + T0Φ(σk).

If G ∈ DA(λ), then it is enough to set an = bn for all n ∈ N0, i. e. it is enough to set F = G.

Indeed, in this case for every k ∈ N0 we obtain

M(σk, G) = G(σk) ≥
nk

∑
n=[nk/2]

eσkλn

eckΦ̃(λn/ck)
≥

nk

2
e− ln nk+T0Φ(σk) = eT0Φ(σk)−ln 2.

Hence, ln M(σk, G) ≥ T0Φ(σk)− ln 2 for all k ∈ N0. Since σk → A, k → ∞, we have TΦ(F) =

TΦ(G) ≥ T0.

If G /∈ DA(λ), then, by Theorem 8, there exists a Dirichlet series F ∈ DA(λ) of the form (2)

such that either an = bn or an = 0 for every n ∈ N0 and F(σ) ≥ eT0Φ(σ) for all σ ∈ [σ0, A). It is

clear that tΦ(F) = t0 and TΦ(F) ≥ T0. ✷

Proof of Theorem 2. Let λ ∈ Λ, A ∈ (−∞,+∞], and Φ ∈ ΩA. Suppose that the condition (11)

holds and consider a Dirichlet series F ∈ D∗
A(λ) such that tΦ(F) < +∞. Set t0 = tΦ(F). Let

T0 > t0 and c ∈ (t0, T0) be fixed numbers. Using the condition (11) with t = T0 and left of the

inequalities (10), for all n ≥ n0 we obtain

ln n ≤
T0 − c

2
Φ

(
ϕ

(
λn

T0

))
≤

1

2

(
cΦ̃

(
λn

c

)
− T0Φ̃

(
λn

T0

))

and thus ∆(c, T0) ≤ 1/2 < 1. By Theorem 6, the series F belong to the class DA(λ) and for this

series the inequality TΦ(F) < T0 holds. Since T0 > t0 is arbitrary, this inequality implies that

TΦ(F) = tΦ(F). ✷
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Proof of Theorem 1. In view of Theorem 2, it remains only to prove the necessity of the condition

(11). Suppose that this condition is false, i. e. there exist positive constants t0 and δ such that

lim
n→∞

ln n

Φ(ϕ(λn/t0)))
≥ δ. (24)

Set T0 = t0 + δ. Then, using the right of the inequalities (10), for every c ∈ (t0, T0) we obtain

cΦ̃

(
λn

c

)
− T0Φ̃

(
λn

T0

)
≤ (T0 − c)Φ

(
ϕ

(
λn

c

))
≤ δΦ

(
ϕ

(
λn

t0

))
, n ≥ n0.

Together with (24) this implies that ∆(c, T0) ≥ 1 for every c ∈ (t0, T0). Then, by Theorem 5,

there exists a Dirichlet series F ∈ DA(λ) such that tΦ(F) = t0 and TΦ(F) ≥ T0 > t0. This

completes the proof of Theorem 1. ✷
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Нехай Φ — така неперервна на [σ0, A) функцiя, що Φ(σ) → +∞, якщо σ → A − 0, де

A ∈ (−∞,+∞]. Знайдено необхiдну i достатню умову на невiд’ємну зростаючу до +∞ послi-

довнiсть (λn)∞
n=0, за якої для кожного абсолютно збiжного в пiвплощинi Re s < A ряду Дiрiхле

вигляду F(s) = ∑
∞
n=0 anesλn , s = σ + it, виконується спiввiдношення

lim
σ↑A

ln M(σ, F)

Φ(σ)
= lim

σ↑A

ln µ(σ, F)

Φ(σ)
,

де M(σ, F) = sup{|F(s)| : Re s = σ} i µ(σ, F) = max{|an|eσλn : n ≥ 0} — максимум модуля i

максимальний член цього ряду вiдповiдно.

Ключовi слова i фрази: ряд Дiрiхле, максимум модуля, максимальний член, узагальнений

тип.


