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THE BARGMANN TYPE REDUCTION FOR SOME LAX INTEGRABLE
TWO-DIMENSIONAL GENERALIZATION OF THE RELATIVISTIC TODA LATTICE

The possibility of applying the method of reducing upon finite-dimensional invariant subspaces,
generated by the eigenvalues of the associated spectral problem, to some two-dimensional genera-
lization of the relativistic Toda lattice with the triple matrix Lax type linearization is investigated.
The Hamiltonian property and Lax-Liouville integrability of the vector fields, given by this system,
on the invariant subspace related with the Bargmann type reduction are found out.
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INTRODUCTION

By use of the different Lie-algebraic approaches the Lax integrable (2 + 1)-dimensional
nonlinear differential-difference systems given on functional manifolds of one discrete and
one continuous independent variables have been obtained in [4], [10], [16], [26], [27]. The sys-
tems represented in the papers [10], [16], [26], [27] possess the triple Lax type linearizations
and infinite sequences of local conservation laws. The (2 + 1)-dimensional nonlinear dynam-
ical systems with such type properties on functional manifolds of two continuous indepen-
dent variables have been investigated by means of the invariant reduction technique in the pa-
per [14]. In this connection it is interesting to know whether the invariant reduction technique
can be applied to the Lax integrable (2 + 1)-dimensional differential-difference systems ob-
tained in [10], [16], [26], [27]. The reductions of the (1 + 1)-dimensional nonlinear differential-
difference systems with the matrix Lax representations upon the finite-dimensional invariant
subspaces generated by the critical points of the related local conservation laws and the asso-
ciated spectral problem eigenvalues, have been considered in [13].

The aim of the present paper is to investigate the applicability of the invariant reduction
technique to the (2 + 1)-dimensional differential-difference systems with the triple matrix Lax
type linearizations, which can be obtained by means of two so called eigenfunction symme-
tries related with the same eigenvalue of the corresponding spectral problem (see [10]). This
research is based on the approach to the study of the finite-dimensional invariant reductions
for the (1 + 1)-dimensional nonlinear dynamical systems, possessing the matrix Lax type rep-
resentations [6], [11], [23], and their superanalogs with the same properties, which has been
devised in the papers [2], [8], [9], [11], [22], [21]. In the framework of such approach the exact

YAK 517.9
2010 Mathematics Subject Classification: 37]05, 37K10, 37K35, 37K60, 70H06.

@ Hentosh O.Ye., 2015



156 HENTOSH O.YE.

symplectic structure on the invariant subspace can be found by means of the Gelfand-Dikii
type relationship [5], [19] for the differential of the related Lagrangian function on a suitably
extended phase space. The discrete analog of the Gelfand-Dikii relationship has been consid-
ered in [18], [19], [20].

In the present article the approach mentioned above is used to study the Bargmann type
reduction [14] of the Lax integrable two-dimensional generalization of the relativistic Toda
lattice [25], which has been constructed in [10].

The paper is organized in the following way. Section 1 contains the triple matrix Lax type
linearization for this (2 4 1)-dimensional differential-difference system that will be used in fur-
ther investigations. In section 2 we establish the existence of an exact symplectic structure on
the Bargmann type invariant subspace by means of the discrete analog of the Gelfand-Dikii re-
lationship as well as the Hamiltonian representations for the reduced commuting vector fields
given by the system. In section 3, basing on the differential-geometric properties of the trace
gradient for the monodromy matrix of the associated periodic matrix linear spectral problem,
we obtain the corresponding Lax representations for the reduced vector fields. The complete
set of the functionally independent conservation laws which are involutive with respect to the
corresponding Poisson bracket and as a consequence ensure the Liouville integrability [1], [17]
of the reduced vector fields is also found.

1 THE TRIPLE MATRIX LAX TYPE LINEARIZATION FOR THE TWO-DIMENSIONAL
GENERALIZATION OF THE RELATIVISTIC TODA LATTICE

In the paper [10] we have constructed the set of the hierarchies of the eigenfunction sym-
metries

Al /AT = —[M;, 1], dfj/dtm = (=M, + ) fj, dfy /dTm = (M, = &) f7, ()

which are additional homogeneous symmetries of the Lax type hierarchy on the extended dual
space to the Lie algebra [3] of Laurent series by the usual shift operator £

dl/dts = [I°, 1], dfj/dts = I f;, dff'/dts = —(I%)" 7, (2)
where | := & —{—Z}ilfjé'(é' —1)7t j*' f=(fi,fa - SRS S5 f3)T € MR,

MR = {g: g(n) e C**, g(n+q) =g(n), ncZ}, geN,
M = Y1) (E — 1) B g,
p=0

o), is the Kronecker symbol, j,m = 1, R, and the lower index "+" denotes a projection of the
corresponding operator on the Lie subalgebra of power series, t,;, Ts;,n» € R, s € IN. Here any
operator A* is assumed to be adjoint to the super-integro-differential one .A with respect to
the scalar product
(x,y) =) y(m)z(n),
nezZ

where y, z € (,(Z;C), n € Z. In the paper the line over any variable denotes the complex
conjugation of this variable.
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In the case of R = 1 and s = 2 the evolutions of the functions describe the relativistic Toda
lattice.

The vector fields (2) have been considered as the Hamiltonian flows generated by the
Casimir functionals

1 s s+1
Y=o nX::o resl°Tf(n)], seZi, (3)

where the symbol "res" denotes the coefficient at £° in the expansion of the corresponding
operator, and Poisson structure found in [10]. In that paper the hierarchies (3) have been es-
tablished to be Hamiltonian with respect to the natural powers of some different eigenvalues
of the associated spectral problem and Poisson structure mentioned above. It has been shown
also that for each j = 1, N the first eigenfunction symmetry and any other which belong both to
the hierarchy related with the same eigenvalue can be applied to construct (2+1)-dimensional
differential-difference systems with the triple matrix Lax linearizations. These systems have
been obtained by introducing some new functions which denote the expressions with inverse
operator to the difference one into the equations of the eigenfunction symmetries.

In the present paper we consider two additional homogeneous symmetries for the Lax type
hierarchy (2) such that

dfy/dt = (—M} +01)f;, df} /dv = (M} - &]1)* fF (4)
and
dfi/dT = (2 — M} + 8.1%)f;, dff /dT = (=15 + M} — 5{12)*]3.*, (5)
where T := 111 and d/dT := d/dt; + 71, in the case of R = 2. The vector fields d/dt and
d/dT are commuting because of the relation
di% /dt = [I3, Mj]+ (6)

where 12 1= &2 + w1 € + wp, wy = (EP) + P, wy := P2+ 272:1((5]3)]‘]-* +fj(5’1f]-*)) and
P=Yi,fiff.
The dynamical systems (4), (5) and commutability condition (6) are written as
fie = (Ef) +Pfitufo, fir = —(E7 /) = Pfi + (Ei)f3),
f2,’l’ = —ilfy, fZ*,T = _(gu)fl*/

AT = Ao+ (E2A) +wi(Ef) +wofs +2(fA(E7f) + uil) f1,
fir = —fiee — E2A) = (ETw) (') —woff —2(AETf) +ui)ff,
for = (E2f2) +wi(Ef) +wofo — iifir + icfi, 8)
for =—(E72f) = (€ w)(E7f) —wofs +ufie —udfy,
(E-Nu=fif;, (E-Di=ff
wor = (E2A)fi = AET ) +wi(EA) = AE T w)(ETf),
w1 = (E2A)ER) - AET),

(7)

©)
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where u, i are some g-periodical complex-valued functions. The dynamical system (8) and
relationships (9) describe the Lax integrable (2+1)-dimensional differential-difference system
[10], which can be considered as some two-dimensional generalization of the relativistic Toda

latti:: .triple Lax type linearization [10] is formed by the spectral relationship
ly =My, (10)
where y € (5(Z;C), A € C is a spectral parameter, and evolution equations
dy/dt = —Mjyy, (11)
dy/dT = (I — M?)y. (12)
The corresponding adjoint spectral relationship and adjoint evolutions take following forms:
I'z = Az, (13)
dz/dt = Mi*z, (14)
dz/dT = — (12 — M?)*z, (15)

where I* = £71 — 2]2:1 ( f]* (€—-1)"1 fi)- The spectral relationships (10) and (13) have the equiv-
alent matrix forms

EY = AY, (16)
Elz=(71AT)z, (17)

where Y, Z € (,(Z; C3),Y = (yl,yz,yg)T,yg =y, Z= (21,22,23)T,23 = (5*12), A= A[f; A

and
1 0 fi
A( 0 1 fa )
—fi —fo» A=P

The corresponding evolutions are written as

dy/dt = BOY, dz/dtv=—(BM)7Z, (18)
dy/dT = BTy, dz/dT = —(B(M)Tg, (19)
where B(Y) := BOI[f; A], B(T) := B(T[f; A], and
—A i (ETN)
BO=( —u 0 o0 ,
-1 0 0
—A2 — uii— Al — fic— AMETV) —a(ET)+
“2f(E7M) —R(ETIR) F2AETIP)(ET )+
+2(E7% )
5(T) _ —AU — Ur— Uil — METIL) +u(E1)+

—fAETf) —R(ET) HE2S)+
+H(ETIP)(ETf)

20y —ufy  —Afa—ifi— A2+2f(E)+
—2(Ef1) —2Pfi —(Efa) = Pfa +f(E71f)
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The matrices B(™) and B(T) satisfy the compatibility conditions

dA/dt = (EB™)A — AB(D, (20)
dA/dT = (€BT))A — AB(D). (21)

The system (8)-(9) possesses the infinite sequence of the local conservation laws (3).

2 THE SYMPLECTIC STRUCTURE ON SOME INVARIANT SUBSPACE

We will study below the differential-geometric properties of the commuting vector fields
d/dt and d/dT on their common invariant finite-dimensional subspace M$, C M?* such as

q—1 N
M, = {f € M*: grad Ly[f(n)] =0}, Ly = Y Lnlf(n)] = =70+ Y cids

n=0 i=1
where vy = Zz;lo 2]2:1 fi(n) fi (n), A; € C,i = 1,N, are different eigenvalues of the periodic
spectral problem (16) with the corresponding eigenvectors Y; = (115, Y2i, y3) | € Wand adjoint
eigenvectors Z; = (z1j,22i,23;) € W, W = {a = (a,a3,a3)" : a(n) € C3, a(n+gq) =
a(n+q), n € Z} C £5(Z;C),and ¢c; € C\ {0}, i = 1, N, are some fixed constants, which will
be chosen later. Here the eigenvalues A; € C, i = 1, N, are considered as smooth by Frechet
functionals on M*,

We will first analyze the differential-geometric structure of the invariant subspace M$, C
M?*. To describe this subspace explicitly we will find the gradients of the eigenvalues A; €
D(M*),i=1,N.

Because of the relations

q—1 q—1
20(51@(”>)T(52i(n)) = Z}O(A[f(n);)u]Yi(n))T(5Zi(n))r i=1N, (22)

that follow from the spectral problem (16), we can derive the explicit form of the gradient of
the eigenvalue A; for any i = 1, N only on the level surface {(f,), Z)T € M Wi = a;, a; €
C\ {0}} of the functional y; :== — ZZ;E y3i(n)(Ezsi(n)), which is invariant with respect to the
vector fields d/dt and d/dT. Thus, for any i = 1, N the gradient of the eigenvalue A; on this
level surface is written as

oAi/of1 J195i(€23i) + 71i(E231)
gr = | OAisof | 1| f395i(E23) + 7i(E23)
grad A = .| = £ _ 4 _ ,
oA/ ai | [175i(E231) — 73i(E211)
oA /6f3 f273i(E23i) — 73i(E221)
where Y = (1, 721, 31) ' Zi = (215,221, 23i) |, i = 1, N.
Let us choose a; = —c;, i = 1, N, and investigate the vector fields d/dt and d/dT on the

invariant finite-dimensional subspace M$, N H. C M?* given by the following Bargmann type
constraints

N N
My He = { fe M*: pfi ==Y ysifi, 0f2 = — ) Ysifai
i=1 i=1

N N
off =Y vz, pfs = Zyzifsi},
i=1 i=1
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where H, := {(£,),2)T € M*: u; = —cj, ¢; € C\ {0}, i =1,N} is a common level surface
of the invariant functionals y;, i = 1, N, in the extended phase space ME = MEx W2N of
the coupled dynamical systems (8), (9), (18) and (19) with the parameter A € {A1, Ay, ..., AN},
and y = (Yl,Yz,...,YN)T, Z = (Zl,Zz,...,ZN)T, Zi = SZl- = (211',221',231')T, i = 1,—N,
p=1- Zfil y3iZ3;. This invariant subspace can be described by means of the equivalent
relationships

N
My He = { feM: Zy3zzlzr fo=—=Y_ ysizai,
i=1

ET = Zy1i23i, Ef = Zy2i23z‘},
=1 o

From (23) it follows that the functions f1, f», £71f;, £ 1f; are expressed via the coordinates
of the eigenvectors Y; and Z;, i = 1, N, on the invariant subspace M%\, N Hc. The relation

(23)

N N N
ZylzZZZ =0, Z]/Zizli =0, (£-1) Z]/3iz3i =0,
i=1 i=1 i=1

(Y2izoi — Y1iz1i) = ZAzyZzzlz f1(571f2*>/
1 i=1

(Y2izoi — V1iz1i) = Z)\iylizzi + H(ET),
i=1

Mz

~.

ﬂ

=z

~.

:
mZi

N N
(riz1i — Yaizai) = 3_ Afyaizai + u Y (Aiyaizai — Aiy1izai)
1 izl izl

N N
u(—fAET) + LETL) +(ETS) Y Aiyaizii +2f1 ) Aiyaizsi

i=1 i=1

N
+AETE) Y. (yizii — yaizai) — (ETPYET ) f,

i=1

N N
e Y (yoizoi — y1izai) = Y Afynizai + 11 Y (Aiy1iz1i — Aivaizai) (24)
iz i=1 iz

N N
—ia(—AET) + LETHE)) +(ET) ;Aiy?ﬁZZi —f ;/\iyliz&'

~.

z

N
— REA) Y. (yuizii + yaizai — 2yzizai) — 2(E P (ET ) o

i=1
N N

Efi ==Y Asizii + f1 ) (yuizii — y3izsi) — Pfa,
i=1 i=1
N N

Efa ==Y Miysizai + f2 ) (Vaizai — Y3iz3i) — Pfa,
i=1 i=1

2 - 1 3

ETf =) Aiynizsi + (E7H) <Z(y1izli — Y3i23i) — (51P)>,

i=1 i=1

N
E2f5 =Y Aipizai + (E71f) (Z YoiZoi — Y3iZ3i) — (511’)),

i=1
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obtained with taking into account the equations (8), (9), spectral problems (16), (17) and evo-
lutions (23), allow to express the entries of the matrices BT[f; A] and BT[f; A], reduced upon
/\/l%[ N He, via the coordinates of the eigenvectors Y; and Z;, i = 1, N. In addition, from the
spectral problems (16), (17) and evolution equations (23), when A € {A1, A,..., AN} we have

s d g a ¥ a3y
E Z y}(iz)(i - 0; ﬁ XZ::lyXiZXi - O, E i;lygiZ3i = 0, ﬁ izzly3iz3i =0.

Therefore, we are in a position to formulate the following theorem.

Theorem 1. The commuting vector tields d/dt and d/dT, given by the system (8)-(9), allow
the invariant reductions upon the finite-dimensional subspaces M3 H. C M* N € N.
These subspaces are diffeomorphic to the finite-dimensional space Mz, which is smoothly
embedded into the space R®N and endowed with the Poisson bracket {.,.} W being the Dirac

reduction of the Poisson bracket {.,.} , ) related with the symplectic structure

N 3
= Z Z Zsz /\ d]/sz Z Z dzsz A d]/sz/ (25)

i=1s=

where "A\" is a symbol of the exterior product on the Grassmann algebra of differential forms

on C®N. The reduced vector fields d/dt and d/dT, given by the equations (18) and (19) when

A€ {Aq, Ay, ..., AN}, are Hamiltonian with respect to the Poisson bracket {., .}w@). The corre-
F

sponding Hamiltonians h(*), h(T) € C*(R®N;R) are reductions of the functions h'"), h(T)

D(M?*), satisfying the equalities

<(df/dr, dy/dv,dZ /dv) ", grad Ly, Y, Z]> = —(£-1)h, (26)
<(clf/dT, 4y /dT,dZ /dT) ", grad Ly[£, Y, Z]> = (£ -1hD, (27)

where the brackets (, ) denote the standard scalar product on C®°N*4, and involutive with
respect to the Poisson bracket {.,.} ). The relationships (23) describe all periodic and quasi-
periodic solutions of the system (8), (9) on the subspaces Mj{, N H,, N € N.

Proof. The exact symplectic structure on the invariant subspace M3, C M?* can be found by
means of the discrete analog [18], [19], [20] of the Gelfand-Dikii relationship on the functional
manifold M?* in the same manner as has been done in the paper [19] for the subspaces of
critical points of local conservation laws.

To make use this relationship we need the explicit forms of the smooth by Frechet function-
als A;,i = 1,N, on H,.. From the equalities (22) we have

3
= Z <Z Eysi(n))Zsi(n) = y1i(n)21i(n) — yai(n)Z2i(n) — fi (n)ysi(n)z1i(n)

— f2 (M)yzi(n)22i(n) + fr(n)yi(n)23i(n) + fa(n)y2i(n)zsi(n) + P(”)yai(”)f3i(”)> ,

where A; = A H./ i =1, N, on the level surface H. in the extended phase space M?. Since the
functionals A} € D(M4), i =1,N, depend on the functions (f,), Z )T e M itis expedient
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to apply the discrete analog of the Gelfand-Dikii relationship to the Lagrangian functional
Ly := ZZ;E Lylf(n),Y(n), Z(n)] € D(M*) of the form

N N
Ln=—v0+ )Y A+ Y cini,
i=1 i=1

where ¢; € C are Lagrangian multipliers, y; = — ZZ;E y3i(n)zsi(n),i=1,N.
Because of the Lax theorem [11], [12] the condition grad Ln[f, Y, Z] = 0 determines the
invariant subspace M3, C M*,

N N
My = {(f,y, Z)T e M*: Zy3zzlzr fo==Y vz EF =Y vz
i=1 i=1

N
£ = Loz, € = Al €712 = ATl6c)2, =N,
i=1

of the coupled dynamical systems (8), (9), (18) and (19) with the parameter A € {g1,..., ¢n}-
Thus, for every N € N the invariant subspace M$, N H. C M?* is diffeomorphic to the sub-
space M%, C M* wheng; = A;,i =1,N.

By means of the discrete analog of the Gelfand-Dikii differential relationship [18], [19], [20]
for Ly € D(M?*) such as

dLN[E Y, 2] = ((df,dY,dZ)7, grad Ln[E, Y, Z]) + (€ —1)aD), (28)

where (), Z) T are coordinates on the suitably truncated manifold M$; and the brackets (, )
denote the standard scalar product on C®N*4, we can find the exact two-form (25)

@@ = da.V)

The reduced two-form w® := (2 o defines the symplectic structure on the invariant sub-
N

space M% N He. ~ M3, C M3, which is smoothly embedded into M3, due to the relation-
ships (23).

The formula (28) ensures the invariance of the reduced two-form w® with respect to the
operator (£ — 1), that is

N 3
ZZ (Ezsi) NA(Eys;) = ZZszl/\dySl

i=1s=

Taking into account that the subspace M3, N He C M* is diffeomorphic to the finite-dimensi-
onal submanifold Mz C R®N determined by the constraints

N N
Fii=) iz =0, F:=) yz1i =0,
i=1 i=1

in the space R®Y, we can obtain the symplectic structure on M3, | Hc as a natural Dirac type
reduction of the two-form &) on M .

The two-form &2 generates the standard Poisson bracket {.,.} ;2 on RN, As the matrix
of constraints {Fy,, F, } ;2), k1, k2 = 1,2, is nondegenerate when Q := Z ~ 1 (y1iz1i — Y2izoi) # 0,



THE BARGMANN TYPE REDUCTION FOR SOME GENERALIZATION OF THE RELATIVISTIC TODA LATTICE 163

the standard Dirac type reduction procedure [7,11] entails the Poisson bracket related with the
symplectic structure wg_%) := w® such that

1 1
{E, G} 0 ={E Glom + E{F' Fi}p0{F2, Gloe — Q{F, B} o {F, Glee

={F,G}oo0+= Y | 22iy5— — V1iip5— ‘ A
{F. G}oe Q Z ( 21 9zy;, s 8y2i1> L (yZzz Uri, 072,

=1 =1

——Z OF api 96 . 9G
yZzl ay 11 111 aZ 11 212 aZ 12 ]/112 ay 12

11 1 i2=1

where F, G € C®°(IR®N;R) are arbitrary smooth functions. Since
dLyn/dt =0, dLy/dT =0,

with taking into account the results obtained in the papers [18], [19] we can state the existence
of the smooth by Frechet functions RO (BT ¢ D(/\/l4), which satisfy the relations (26) and

(27) correspondingly. Then for the functions h(7) := A(?) it and h(T) := A(T) s Ve have
N

N
id/dTw(z) = _dh(T), id/dTw(z) — —dh(T)’

where i;/45; and ij;r are inner differentiations with respect to the vector fields
d/dt : M3 — T(M3,) and d/dT : M3, — T(M3,) in the Grassmann algebra of differen-
tial forms on IRV,

Therefore, the functions h(¥) and h(T) are Hamiltonians of the reduced upon M‘}\, NH: C
M?* vector fields d/dt and d/dT when ¢; = A;, i = 1, N. They take the following forms

N
G — Z}Hylizli — AE),

=1

N
= Y (AMlyzizsi — AZy1iz1i)
=1

( ie1 Aiy1izai + f2(€ 1fi‘)) (Zf\h Aiy2izai — f1(5_1fz*)>
YN (yaizai — y1iz1i)
X N N
ETf) Z Ayzizii + (E77f7) Z Aiysizai — 21 ) Aivrizsi — f2 ), Aivaizai
j =1 =1

N N
+2A(ET) Z Yaizai — Y1izi) + f2(E 1 f3) Z Y3iZ3i — Y1iZ1i),

where the functions f1, f», £71ff, £71f; have the forms (23).
By means of the direct calculations it is easily to verify that

O, Ry = — Ly

I7 =0.
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Let us consider the vector field d/dt;, commuting with the vector fields d/dt and 4/dT,
on the functional manifold M* and investigate its reduction upon the invariant subspace
M3} NH: € M* N € N. In the same manner as in the proof of Theorem 1 we can find
the Hamiltonian representation for the reduced vector field d/dt;. The corresponding Hamil-
tonian #(11) takes the form

N

W =Y Aiysizai — A(ET) — H(ET ).
i=1
Since P P
(), Y ) = —d—tlh@ =0, {WM,nMY o = —d—tlhm =0,
the reduced vector fields d/dt;, d/dt and d/dT are integrable in the case of N = 1 due to the

Liouville theorem [1], [17].

3 THE LAX-LIOUVILLE INTEGRABILITY OF REDUCED VECTOR FIELDS

To state the Liouville integrability of the Hamiltonian vector fields d/dt and d/dT on
M%\, N H. ¢ M* for all N € IN we need to construct the related matrix Lax representations,
which depend on the spectral parameter A € C, making use the reduction procedure for the
monodromy matrix of the periodic spectral problem (16). Thus, the following theorem holds.

Theorem 2. For every N € IN on the intersections of the finite-dimensional subspace
M%\, N He ~ M 5 with the level surfaces h¢c := {(V,Z)" € RN : Zf\il y3iZs1 = C, C € C} of
the invariant function1 — p = Zf\il y3iZ3; the matrix Lax representations for the Hamiltonian
vector fields d/dt and d/dT have the following forms

dSy/dt = [BY, Sn], (29)
Sy /dT = B\, $yl, (30)
(1) ._ pl7) A — p(Ore (T) ._ p(T) Y — p(D)re.
where By’ := By’(Y, Z;A) = BY[f;A] , By’ = By (Y, Z;A) = BUWIE; A
MzNhc Mz Nhe
are projections of the corresponding matrices on M x () hc and
N
y S.
SN = ! S
N = A A + 50
N Viiz1i Y1iZ2i Y1iZsi -C 0 0 (31)
= Z A A, | YEu Y2izai Yaizsi + 0o -C 0 .
= "\ sz Ysizoi Yaizsi 0 0 1-C

Proof. Making use the spectral problem (16), we can express the gradient ¢(n;A) := gradtr S
of the trace of the corresponding monodromy matrix

S:=SmA)=Alf(n+g—1);A|A[f(n +9 —2);A] x ... x Alf(n); A]

via the entries of the matrix V = SA~! by such a way

tr(VAy) —Viz — f1 Va3

. tr (VAg,) —Voz — f5 V33
mA) = _2 = _ 22 ,

o(ni ) tr (VAg) Va1 — f1Va3

tr (VAg) Va2 — f2 V33
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where ¢(1;A) ~ ¥,cz @r(m)A~0+Y) . = grad y,[f], when |A| — co, V is a matrix with the
entries, being complex conjugate to the corresponding ones of the matrix

Vin. Vi Vis
Vi=| Vor Vo Vo3 |,
Va1 Va Va3

and A fir A for A fir A f; are matrices with the enteries, being complex conjugate to the corre-
sponding ones of A, Af,, Afr, Ags respectively.
From the equation for the matrix V'

E(VA) = AV, (32)

we can obtain the Magri type relationships [15]

Fo(mA) =Ane(n;A) —neo, (33)

where ¢, 17 : T*(M?*) — T(M?*) are a pair of linear Poisson operators of the forms

0 0 10
o 0 01
=1 -1 0 00|’
0 -1 0 0
~fllf —pATEA—  E+ AL+ ANTIES
—finf +HAT i+
+P
—haT - —fl1f2 RATIERT £+ RIIG+
—RATIER +AAT
¢ = +P
&M+ fTIA+ fiAf —AIff AT -
+HATIEf — P A7
FaLR =&+ [+ AT - —fT0f

+ATIER-P —fiATIES,
Here A = (£ — 1), I1 = A~1(€ +1). Taking into account the equality

grad A;,
A=A

p(n;A;) = ( % trS(n; A)

we find for every i = 1, N that

-1
Agrad\; = A; grad \; + i trS(n; A) @0, A= 77_119,
dA A=A,
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d
I trS(n; A)

d/dtand d/dT.
Then on the invariant subspace M3, N H, C M?* the gradients of the conservation laws
Ym € D(M*), m € Z., take the forms

-1
where 0; := ) = ;:1 YyiZyi is invariant with respect to the vector fields
Ai

A=A

N N N
po =) gradri, ¢1=Agy= ZAZ- grad i+ 1y gradA;, ...,
i=1 i=1 i=1

¢r = N@,_1 = Z Al grad A; + Z “Pgrad);, etc, (34)

i=1 p=1 i=1

where
N N N N r.oO N
h=Y o0, =Y Aoi+h) o, .. =Y Ao+ )Y A To, et
i=1 i=1 i=1 i=1 p=1 i=1

From the relationships (33) and (34) we obtain directly the explicit forms of the entries
Viz, Vas, Va1, Va1, Vo, Vaz on My, N Hc such as

relN relN

N
Il
—_

Vi = <1+ Y JAT > Z y11231 -, V3= (1—|- Y AT

v
1=

e e
N

N0

>|@

N -
Vay = <1+ Y I ) YL v, = (1+ ) I ) I
reN =N t reN =17 M
oL YaiZai
Vs =1+ ) J:A™ ZA—A-’
relN i=1 !

-1
N
_ Ji
where 1+, en /AT = (1_§A—)\i> .
The remaining entries of the reduced matrix Vi := V| M H, €A1 be derived from the
equation (32), considered on the level surfaces hc, C € C, of the invariant function 1 — p. On

these surfaces the functions f;, f; satisty the following equalities

N

. N o1 AR | 1
fil1-Cc+Y, YA +), V%0 = Y. L Y1i%8is
=1/ i=1 /M =1
AN i N1 N1
fi Z A Y2 + f2 <1 -C+ Z xyzizzz) = Z A, Y%
1 1
- fi Z A ~Y3iz1i — f> Z A ~—VY3izoi + Z A, —3iz3; = C.

Thus, the reduced matrix Vy on M‘I{I N H:Nhc, C € C, is written as

Vi = (1 iy m—r) W

relN
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where

v

N:

o

Il
—_

1 Y1iZ1i YiiZoi Y1iZsi -C 0 0
| Y2iZui YoiZai YauZzm |+ 0 —-C 0 |.
pEy

Y3iZ1i Y3iZai Y3iZsi 0 0 O

1

The explicit form (31) of the monodromy matrix Sy on M%\, N H:Nhc, C € C, follows from
the relationship

Sn = VNAN,

where the matrix Ay := An(Y, Z;A) = A[f;A]| v, i @ projection of the matrix A on
M3, N He N he. Thus,

SN = (1+ Z ]r)L_r) SN,

relN

A=A

The relations (29) and (30) are derived from the monodromy matrix equation [6]

N .
where the matrix Sy has the form (31) when |A| > max;_17 |Ai| and (Z gi > # 1.
i=1

(ES)A = AS

and compatibility conditions (20)-(21). O

1
Due to the equations (29) and (30) the functionals — tr S3;, « € IN, are invariant with respect

«
to the vector fields d/dt and d/dT. Then the coefficients in the expansions of these functionals
by poles appear to be conservation laws of the reduced upon M r (N hc, C € C, vector fields
given by the system (8), (9). The coefficients o;, 0;, 7; € C* (R®N;R),i =1, N, in the expansions

« 1 1.
of the invariant functionals tr Sy, > tr $%, and 3 tr 3, such that

N 2 5.
y 4y + X2 —ac 11y,

3 3
N ( Z yXliz)ak) < Z szkZ)czl)

=1 x2=1
—F +fr (5050 = Z X
k=1, ki Ai =M
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and

s =3 1 Ry ‘ +;A_Ai ;(83C7 =3C* +3C-1),

al r (S Yoo (S —0;
y tr (SiS5xS¢) Py t (S()i-k)—(z)z 7i)

N
tr (So(S;Sk + SkSi)) 2.
+ Z X — AL +tr (555:)

3 3 3
N < )3 yxlisz> ( )y VXzEZsz> < )y ymkzmi)
_ Z xi=1 x2=1 x3=1
Ai = A) (A=A
ki=1, ( i k)( i ()

kO£, k0

3 3 3
( Z yXliZX1k> ( Z szkZX2i> Z (yX3iZX3i - yX3kZX3k)

x1=1 x2=1 x3=1
(Ai = Ag)?

(=C(y1iz1k + Y2izok + Y3iz3k) + Y3iZ3k <Z ]/XkZXz>

Ai — Ak

(—C(yakz1i + Yokzoi + Y3kz3i) + Yarzai ( ) ]/XlZXk)

A — Ak

-
+ (C2 121i + C*yaizai + (1 = C)*yaizai),

are functionally independent on M r N h¢, C € C. Being involutive with respect to the Pois-
son bracket {.,.} ), the coefficients o;, 0;, ; € C®(R®N;R), i = 1,N, ensure the Liouville
integrability of the vector fields d/dt and d/dT on the finite-dimensional subspaces M r (1 k¢,
C € C (see [1], [17]). The surfaces h¢c, C € C, mentioned in Theorem 2, are determined by the
conditions

N1 N1 N1 N1
( Z Tylilz3i1< -C+ Z y2122212> - Z TyZileil ( Z A%ylizzziz)) Z Afy3i321i3
i1=1 Ih i1=1 Ih =1 2 i=1""13
N 1 N 1 N 1 N 1 N 1
- <<1 - C + Z /\—}/1112111> Z A__y2i223i2 - Z /\__ylilzZil ( Z A__yZZ‘ZZlZ‘z)) Z A_‘y3i322i3
i1=1 ir=1""12 ih=1""1 ir=1""12 i=1""13

‘ -

N1 Noq
]/2132213> - Z 1 Y1720, ( ) Ty2i3zli3>>: 0,
1) 1'3:1 13

=1
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when
N 1 N 1
=1 I ir=1 12
N1 N1
— <Z Z]/li@Zﬁ) (Z Zy2i221i2> # 0.
1 2

i1=1 ir=1
4 CONCLUSION

In the present paper by use of the method [2], [8], [9], [11], [22], [21] of reducing upon the
special finite-dimensional invariant subspaces we have investigated the Bargmann type reduc-
tion of the Lax integrable two-dimensional generalization of the relativistic Toda lattice [10].
We have shown that the symplectic structure on the corresponding finite-dimensional invari-
ant subspace can be found by means of the discrete analog of the Gelfand-Dikii relationship for
the related Lagrangian function on a suitably extended phase space. This invariant subspace
has been established to be diffeomorphic to the symplectic manifold smoothly embedded into
space R°N, N € IN, with the canonical symplectic structure. The Lax-Liouville integrability of
the reduced vector fields given by the system has been proven.

If R = 2, for every s € IN, s > 2, the evolutions of the vector-function (f1, f2, f;, fz*)T €
M?*, which are generated by the vector fields d/dT; := d/dt; + d/dt,, and d/dT, := d/dT
and written out with taking into account the equalities

Bfy=(d/dv+M)*fi, Pff = (=d/dT+ MV ff,

together with the relationship
dli /de,l = [ j»r M%]-’-r

determine (2 4 1)-dimensional nonlinear dynamical system with the triple Lax type lineariza-
tion. The symplectic finite-dimensional manifold described in the paper is a common invariant
subspace of the vector fields d/dTs := d/dt; +d/dt;1, s € IN, on which they are Hamilto-
nian and integrable by Liouville. Thus, it is interesting to investigate the possibility of ap-
plying the integration procedure, developed for the Liouville integrable finite-dimensional
systems in [24], to the vector fields reduced upon this invariant subspace. The integration
procedure [24] is based on the specially constructed Picard-Fuchs type differential-functional
equations which generate the Hamiltonian-Jacobi transformations.
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T'enromt O.€. Pedykyia Bapemara 014 0edkoeo iHmezposHoeo 3a Aaxcom 08061MIpHO20 Y3a2aibHeHHS pe-
agmusicmcokoeo aanytodcka Toou // Kapmarceki matem. my6a. — 2015. — T.7, Ne2. — C. 155-171.

AOCAIAXYETBCSI MOXAMBICTD 3aCTOCYBaHHSI METOAY PeAyKyBaHHsI Ha CKiHUeHHOBMMIpHi iHBapi-
aHTHI Hi ATPOCTOPY, MOPOAKEHI BAQCHVIMM 3HaUeHHSIMM acOLiI0BaHOI CTIEKTPaAbHOI 3aAa4i, AASI Ae-
SIKOTO ABOBMMIpPHOTO y3araAbHEHHSI PeASITUBICTCHKOTO AaHIIOXKa TOAM 3 MOTPiliHOI MaTpUYHOIO
AiHeapwmsaliiero Ty Aakca. BctaHOBA€HO raMiABTOHOBICTD Ta iHTETpOBHICTH 3a AakcoM-AiyBiareM
3aAaHMX IIi€I0 CHCTEMOO BeKTOPHMX MOAIB Ha iHBapiaHTHOMY IIAITPOCTipi, ITOB’sI3aHOMY 3 PeAyKIIi-
ero Tuny baprmana.

Kntouosi cnosa i ¢ppasu: peasTUBICTCHKMIL AaHITFOXKOK ToAM, OTpilHa AiHeapu3amis vy Aakca,
iHBapiaHTHa PeAYKIIisl, CMUMIIAeKTUYHA CTPYKTypa, iHTerpOBHICTD 3a AiyBiAAeM.



