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ALMOST KENMOTSU f-MANIFOLDS

In this paper we consider a generalization of almost Kenmotsu f-manifolds. We get basic
Riemannian curvature, sectional curvatures and scalar curvature properties of such type manifolds.
Finally, we give two examples.
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1 INTRODUCTION

Let M be a real (2n + s)-dimensional smooth manifold. M admits f-structure [8] if there
exists a non-null smooth (1,1) tensor field @, tangent bundle TM, satisfying ¢> + ¢ = 0,
rank ¢ = 2n. An f-structure is a generalization of almost complex (s = 0) and almost contact
(s = 1) structure. In the latter case M is orientable [9]. Corresponding to two complemen-
tary projection operators P and Q applied to TM, defined by P = —¢? and Q = ¢?> + I,
where I identity operator, there exist two complementary distributions D and D+ such that
dim (D) = 2n and dim (D) = s. The following relations hold [6]

oP=Pp=9, ¢Q=Qp=0, ¢’P=-P, ¢’Q=0.

Thus, we have an almost complex distribution <D, ] = oy J2=—1 ) and ¢ acts on DL as
a null operator. It follows that

TM=DoD+, DNnDt={0}.

Assume that D; is spanned by s globally defined orthonormal vector {¢;} at each point
p € M, 1 <i<s, withits dual set {'} . Then one obtains

S .
P =-1+Y 1o
i=1

In the above case, M is called a globally framed manifold (or simply an f-manifold) ([1], [5]
and [4]) and we denote its frame structure by M (¢, {;) . From the above conditions one has

9li=0, niop=0, 7 (&) =0l.
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ALMOST KENMOTSU f-MANIFOLDS 7

Now we consider Riemannian metric g on M that is compatible with an f-structure such that

g(pX,Y) +g (X, 9Y) =0, g (X, 9Y) = g(X,Y) — gni (X)n' (Y), g (X, &) =1 (X).

In the above case, we say that M is a metric f-manifold and its associated structure will be
denoted by M (¢, &;,17',g) -
A framed structure M (¢, ¢;) is normal [5] if the torsion tensor N, of ¢ is zero i.e., if

S .
N¢ :N+22d1’]l®€l :0,
i=1
where N denotes the Nijenhuis tensor field of ¢.
Define a 2-form ® on M by ® (X,Y) = g(¢X,Y), forany X,Y € I' (TM) . The Levi-Civita
connection V of a metric f-manifold satisfies the following formula [1]:

2¢ (Vx)Y,Z) = 3d (X, 9Y, 9Z) —3d (X,Y, Z)
+8(N(Y,Z),9X) + N7 (Y, Z) 1/ (X)
+2dn! (9Y, X) ! (Z) — 24y (9Z,X) 0/ (Y),

where the tensor field N]-2 is defined by

N2(X,Y) = (Loxt) Y = (Lgyn) X = 2dy] (9X,Y) = 241/ (¢, X),

foreachj € {1,...,s}. Following the terminology introduced by Blair [1], we say that a normal
metric f-manifold is a K-manifold if its 2-form ® closed (i.e., d® = 0). Since #' A --- A7° A
®" #£ 0, a K-manifold is orientable. Furthermore, we say that a K-manifold is a C-manifold if
each 7 is closed, an S-manifold if dy! = dy? - - = dy* = ®.

Note that, if s = 1, namely if M is an almost contact metric manifold, the condition d® = 0
means that M is quasi-Sasakian. M is said a K-contact manifold if dy = ® and ¢ is Killing.

Falcitelli and Pastore introduced and studied a class of manifolds which is called almost
Kenmotsu f-manifold [3]. Such manifolds admit an f-structure with s-dimensional paral-
lelizable kernel. A metric f.pk-manifold of dimension (2n +s), s > 1, with f.pk-structure
(¢, &, g), is said to be a almost Kenmotsu f.pk-manifold if the 1-forms ns are closed
and d® = 25! A ®. Several foliations canonically associated with an almost Kenmotsu f.pk-
manifold are studied and locally conformal almost Kenmotsu f.pk-manifolds are characterized
by Falcitelli and Pastore. Oztiirk et al. studied almost a-cosymplectic f-manifolds [6].

In this paper we consider a generalization of almost Kenmotsu f-manifolds. We get some
curvature properties.

Throughout this paper we use the notations 7 = ! + 72 + -+ 715, =& + &+ + &
and &, = 0} + 6% + - + 8.

2  ALMOST KENMOTSU f—MANIFOLDS

Almost Kenmotsu f-manifolds firstly defined and studied by Aktan et al. as mentioned
below [6].
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Definition 2.1 ([6]). Let M (¢, ¢;, ', g) be (2n + s)-dimensional metric f-manifold. For each
qi, 1 <i <s, 1-forms and each ® 2-forms, if d;yi = 0 and d® = 21 A\ D satisty, then M is called
almost Kenmotsu f-manifold.

Let M be an almost Kenmotsu f-manifold. Since the distribution D is integrable, we have
L,:lﬂj =0, [&, ﬁj] € Dand [X, g’,‘]-] € D forany X € I' (D). Then the Levi-Civita connection is
given by

S

Y- (2(@X, 1) & =1/ (Y) 9X) ,Z> +e(N(Y.2),9X), (1)

28((Vxp)Y,Z) =2 (
=1

forany X,Y,Z € T (TM) . Putting X = &; we obtain V¢ = 0 which implies V¢; € D+ and
then v@'ié’j = nggi, since [Cir ‘:]} = 0.

1
Weput A;X = —Vx& and h; = > (Lg, @) , where L denotes the Lie derivative operator.

Proposition 2.1 ([6]). For any i € {1,...,s} the tensor field A; is a symmetric operator such
that

1) A; (¢j) =0, foranyje{1,...,s},

2) Ajogp+goAj= 29,

3) tr(A;) = —2n.

Proof. Equality di = 0 implies that A; is symmetric.
1) Forany i,j € {1,...,s} deriving g (&;, &) = (5{.. with respect to Gy, using V.§; = Ve g,
we get 2¢ (&, A; (&j)) = 0. Since V¢, &j € D+, we conclude A; (&) = 0.
2) Forany Z € T (TM), we have ¢ (N (¢;,Z)) = (Lg¢) Z and, on the other hand, since
Veg =0,
Legp = Ajo g — o A; (2)

One can easily obtain from (2)
—AX = —¢*X — gh;X. 3)

Applying (1) with Y = ¢;, we have

2¢ (pAX,Z) = =28 (¢X,Z) — g (¢N (¢i, Z) , X),

which implies the desired result.
3) Considering local adapted orthonormal frame {Xj, ..., Xy, ¢X3,..., 9Xn, C1,...Cs}, by
1) and 2), one has

n

n
trA; =) (8 (AiX;, X)) + 8 (AipXj, 9X;)) = =2} g (X}, 9X;) = —2n.

j=1 j=1
U

Proposition 2.2 ([1]). For any i € {1,...,s} the tensor field h; is a symmetric operator and
satisfies

i) higj =0, foranyje {1,...,s},

ll) hiO(p—F(pOhi :O,

iit) trh; = 0,

iv) troh; = 0.
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Proposition 2.3. V, satisfies the following relation [6]:

(Vxp) Y+ (Voxg) ¢ ;[ (7 () X +2g (X, @¥) &) =1 (¥) hiX] . @

Proof. By direct computations, we get

S .
N (X,Y)+ N (¢X,Y) =2) 7' (X)hY,
i=1

and ‘
n' (N (¢X,Y)) = 0.

From (1) and the equations above, the proof is completed. O

3 ALMOST KENMOTSU f-MANIFOLDS WITH ¢ BELONGING TO THE (k, #, v)-NULLITY
DISTRIBUTION

Definition 3.1. Let M be an almost Kenmotsu f-manifold, x, 4 and v are real constants. We
say that M verifies the (x, u,v)-nullity condition if and only if for eachi € {1,...,s},X,Y €
I' (TM) the following identity holds

R(X,Y) & =« (77 (X) g2Y =7 (Y) ¢2X) + (7 () X =77 (X) h;Y)
+v ([(Y)phiX —77(X)ph;Y).

Lemma 3.1. Let M be an almost Kenmotsu f-manifold verifiying (x, u, v)-nullity condition.
Then we have:

(i) hjo hj = hjoh; foreachi,j € {1,2,...,s},

(ii) k < —1,

(iii) if x < —1 then, foreachi € {1,2,...,s}, h; has eigenvalues 0, =+/—(x + 1).

(5)

Proof. From (5) it follows that for each X € T'(TM), i,j € {1,2,...,s}

R(j, X)&i — ¢R(Gj, 9X)& = 2x¢”X

Using
R(&, X)& — pR(Gj, pX)& =2 [~ ¢*X + (o) X
we obtain
(hiohj) X = (k+1) ¢°X = (hjo ;) X (6)
and then (i) is verified. Next from (6) we get
X = (k+1) ¢°X, 7)
X =—(k+1)X, X eI(D). (8)
Then, using Proposition 2 and (8) we obtain that the eigenvalues of h? are 0 and — (k +1).
Moreover h; is symmetric: || X[ = —(x + 1) ||X||*. Hence x < —1. Finally let ¢ be a real
eigenvalue of h; and X be an eigenvector corresponding to t. Then £2 || X||* = —(x + 1) || X||?

and t = ++/—(x + 1). Taking Proposition 2 into account we get (iif). O
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Proposition 3.1. Let M be an almost Kenmotsu f-manifold verifying (x, u, v)-nullity condition.
Then

hy = =hs. 9)

Proof. 1If « = —1 then from (7) and the symmetry of each h; we have h; = --- = hy = 0. Let
now k < —1. Wefixx € Mandi € {1,2,...,s}. Since h; is symmetric then we have D, =
(D4)x ® (D-)x, where (D4 )y is the eigenspace of h; corresponding to the eigenvalue A =

—(xk+1) and (D-)y is the eigenspace of h; corresponding to the eigenvalue —A. If
X € Dy then we can write X = X; + X_, where X; € (D4)y, X € (D_)y so that
hiX = AMX4 +X-). Wefixj € {1,2,...,s}, j # i. Then from (6) we get ;X = h;(X; + X_) =
hi(3hiXy — 3hiX_) = } (hjoh;) (X4 +X_) = A(Xy 4+ X_) = hX. Taking into account

Proposition 2 we obtain (9). U
Remark 3.1. Throughout the paper whenever (5) holds we puth := hy = --- = hs. Then (5)
becomes
R(X,Y) & = (7(X) 7Y =77 () 9*X) e (7 () X — 7 (X) ) W)
+v(7(Y)phX —77(X)phY) .

Furthermore, using (10), the symmetry properties of the curvature tensor and the symmetry
of ¢? and h, we get

R(& X)Y = x (7(V)9?X = g (X, 9*Y) T) + (2 (X, hY) § = 7(¥)hX)

_ (11)
+v (g (phX,Y) & 7 (Y)phX) .

Remark 3.2. Let M be an almost Kenmotsu f-manifold verifying (x, u,v)-nullity condition,
with k # —1. We denote by D and D_ the n-dimensional distributions of the eigenspaces
of A = \/—(x +1) and —A, respectively. We have that D and D_ are mutually orthogonal.
Moreover, since ¢ anticommutes with h, we have ¢ (D) = D_ and ¢ (D—-) = D.. In other

words, D, is a Legendrian distribution and D_ is the conjugate Legendrian distribution of
D,.

Proposition 3.2. Let M be an almost Kenmotsu f-manifold verifying (x, u, v)-nullity condition.
Then M is a Kenmotsu f-manifold if and only if x = —1.

Proof. We observed in the proof of Proposition 3.1 that if k = —1 then h = 0. It follows that
(10) reduces to R (X, Y) & =77 (Y) *X — 77 (X) ¢?Y. From [2, Proposition 3.4, Theorem 4.3] we
get the claim. H

4 PROPERTIES OF THE CURVATURE

Let M (¢, &, g) be a (21 + s)-dimensional almost Kenmotsu f-manifold. We consider
the (1, 1)-tensor fields defined by

lij () = R g

foreachi,je {1,...,s} and putl; = I;;.
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Lemma 4.1. Foreachi,j k € {1,...,s} the following identities hold:

polijop—1Ij —Z[h Oh—q)] (12)
kol =0, (13)

lii (Gk) =0, (14)
Vg}.hi:—q)ol]'i—q)— (h]—{—hl) —q)ohiOh]', (15)
Vehi=—@oli— ¢ —2h — gh. (16)

Proof. Identity (12) is a rewriting of [7, (3.4)]. Formulas (13) and (14) are an immediate conse-
quence of (12). Next from (3) and 7, 0 (Vg l1x) = 0 we get

lij = <g0 <V§]h1> +q02—}—§00hi+q)ohj_hjohi) .
Applying ¢ to both sides we get
(Vehi) = (~golij— ¢ —hi—hj—gohjoh),
from which it follows (15). Finally, identity (16) is (15) when i = j. O

Remark 4.1. Let M be an almost Kenmotsu f-manifold verifying (x, u,v)-nullity condition.
Then for eachi,j € {1,...,s} we have

lii = —x@* + uh + voh. (17)
It follows that all the /;;’s coincide. We put | = [;;.

Lemma 4.2. Let M be an almost Kenmotsu f-manifold verifying (x, y, v)-nullity condition.
Then for eachi € {1,...,s}, the following identities hold:

Veh = —pugh +vh —2h, (18)

lo — @l =2uhe + 2vh, (19)

lo + ¢l =2k, (20)

QGi = 2nx¢. (21)

Proof. From (16), using (17), we obtain (18). Identities (19) and (20) follow directly from (17)

using ho ¢ = —¢ o h. For the proof of (21) we fix x € M and {Ej,..., Ex,4s} a local ¢-

basis around x with Ey,11 = §1,..., Eanys = Cs. Then using (11) and trace (h) = 0 we get
2n 2n _ 2n _

Qi = ‘21 RekEj = ‘21 g ((PzEj'Ej) C=x -21 9jiG- .

= = =

Lemma 4.3. Let (M, ¢,;,7j,8) be a (2n + s)-dimensional almost Kenmotsu f-manifold. Then
the curvature tensor satisfies the identities

g (RexY,2) 277] )8 (@7Y,X) - 277] )2 (9°2,X)

S

+ ; 1 (2) 8 (phY, X) = Y n; (V) & (phiZ, X) + g (Vzohi) Y — (Vyohi) Z, X)

(22)

and

8 (RexY, Z) = 8 (Reix @Y, 9Z) + 8 (RepxY, 9Z) + 8 (Rgpx9Y, Z)

=2¢ ((Vix9) Y, Z) + 27 (Z) g (hiX — ¢X, 9Y) =277 (Y) g (hiX — ¢X, ¢Z)
foreachi=1,...,sand X,Y,Z €T (TM).

(23)
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Proof. Using the Riemannian curvature tensor and (8), we obtain (22).
We introduce the operators A and B;,i € {1,..., s}, defined by

AX,Y,Z) =27 (Y) g (X, 9Z) — 217 (Z) g (¢X, ¢Y)

and

Bi(X,Y,Z) := —g(¢X,(Vy (poh)) (¢Z)) — g (¢X,(Vy (¢poh)) Z)
—8(X, (Vy(9ohi))Z) +8 (X, (Vyy (9o hy)) (9Z))

for each X,Y,Z € I' (TM). By a direct computation and using (22) we get that the left hand
side of (23) equals A(X,Y,Z) + Bi{(X,Y,Z) — Bi(X,Z,Y). Since

1 (Vovhi) Z) = 1 (Vey (LZ)),

we can write

Bi(X,Y,Z) = =8 (X, (Vy (¢ohi) Z)) + 8 (X, (9o hi) (VyZ))
+8 (X, (Vyy (pohiop)Z)) +8 (X, (9o hi) (VyyeZ))
— 8 (X, (Vy (9ohio9)Z)) + g (¢X,(@ohi) (Vy(9Z)))
—8(¢X, (Vo (pohi) Z)) + (GDX (pohi) (Vey (hiZ)))

=8 (X, (Vyo) (hZ)) + g (X, hi (Vye) Z))

+8 (X, (hiop) (Vore) Z)) +8 (X, 0 (Veve) (i2)))

F Y (Torh) Z) 1 (5.
=1

(24)

Moreover, from (3), (4) and Proposition 1 it follows that
(90 (Voxg)) Y (VW )Y = (Voxe) (9Y)

= ; ((Voxmj) YE5) + i (77 (Y) Vox)

=1

]
— (Voxo) (9Y) = .Z%((WX) (8(¢Y))¢
L
—8(VexY,gj) &) + Zsiﬂj (Y) (¢X — hjX)
L
n zl 1 (V) BX 1 7(Y) X + 2 (X, 9Y) E + (Vxq) Y.

Hence
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Furthermore, from (4), foreach j € {1,...,s} we have

i (Voyhy) Z) = n: (Voy (2)) = (Voyni) (hjZ)

25
— g (K2, V&) =g (KZ, Y — gY) >
Then, using (24) and (25), we get
Bi(X,Y,Z) = —g(X,(Vye)(hiZ))+g(X,hi (Vye)Z))+ 277 (Z) g (hiX, ¢Y)
+8 (mX, (Vyo) Z) + 7 (X) g (Y, ohiZ) = Y (X) g (miZ, 1Y)
j=1
+ Y1 (X) g (Z, 1Y) + g (X, (Vye) (Z)) =77 (X) g (¢, hiZ)
j=1
=2(g (X, (Vye)Z) +7(Z) g (X, 9Y) =7 (X) g (¢Y, hiZ)).
Therefore we obtain
A(X,Y,Z)+Bi(X,Y,Z) —Bi(X,Z,Y)
=2(Vy®) (hiX,Z) —2(Vz®P) (hiX,Y)
+217(2) § (hiX — ¢X, ¢Y) = 277 (Y) § (hiX — ¢X, ¢Z)
and hence (23) follows. O

Remark 4.2. Let M be an almost Kenmotsu f-manifold. Then from (23) using
(Vix®) (Y, Z) = =g ((Vi,x9) Y, Z) , foreach X,Y,Z € T (TM) , we get
1
(Vix®) Y = 5 (PReipxY — Rejpx9Y — 9Rz,x9Y — RexY) 6
+8 (X — ¢X,@Y) {+7 () (qohiX - qux) :

Lemma 4.4. Let M be an almost Kenmotsu f-manifold verifying (x, p, v)-nullity condition.
Then the following identities hold:

(Vx)Y = g(¢pX +hX,Y)¢ —n(Y)(9X + hX), (27)

(Vxh)Y = (Vyh)X = (k + 1) (7 (V)X — 7(X)9Y + 28 (X, Y)E) 28)
+ u((V)phX —n(X)hY) + (1 —v)(n(Y)hX — (X)hY).
Proof. From (26) we obtain
(Vix@) Y = = (k+1) g (X,Y) {+ (k. + 1) 77 (V) X+ 77 (Y) phX + g (hX, 9Y) &.

Here we replace X with hX and by a direct computation, taking into account (3), (7), we get
(27). From (27), since h and ¢? are self-adjoint, we have

(Vx(poh)Y = (Vy(poh) X =9 ((Vxh)Y = (Vyh)X).
It follows that for each Z € T' (TM)

g (R, 2) =71 (Y) g (9X + phX, Z) =71 (X) g (9*Y + 9hY, Z)
+8 (¢ ((Vyh) X = (Vxh)Y),Z),

(29)
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where we use (5) of [6] and (27). From (29) and the symmetry of & and ¢ it follows that
@ (Vyh) X = (Vxh) Y) = Ryy& =7 (Y) (X + phX) +77 (X) (2 + ph ).
Then, applying ¢ to both sides of the last identity, using (10) and
m((Vyh) X —(Vxh)Y)=-2(x+1)g(¢X,Y), 1€{1,...,s},
we get (28). O

Theorem 1. Let Z=(M, ¢, &;, i, g) be a (2n + s)-dimensional almost Kenmotsu f-manifold and
<(]5, 51-, 1%, §> be an almost f-structure on M obtained by a D-homothetic transformation of
constant w. If Z verifies the (x, u,v)-nullity condition for certain real constants (x,u,v) then
<M, ?,&, s gN) verifies the (X, ji, V)-nullity condition, where

K =

RN

IO
7 ]’l:EI V:&-

Proof. From (18) and (9) it follows that By = -+ = hs. Then, using (27), by a direct calculation

we get the claim. O

Lemma 4.5. Let M be an almost Kenmotsu f-manifold verifying the (x, u, v)-nullity condition.
Then

X,Y el (Dy)= VxY el (D), (30)
X, YT (D_)=VxY el (D), (31)
Xel'(Dy),YeI' (D) = VxY eI (D_dker(¢)), (32)
XeTl (Do), YeTI(Dy)=VxY el (Didker(g)). (33)

Proof. From (28) we get g ((Vxh) 9Z — (Vyzh) X,Y) = 0, for each X,Y,Z € I'(D4). On the
other hand, since / is symmetric, from Remark 2 we have

8 ((Vxh) 9Z — (Vyzh) X, Y) = =248 (Vx (¢2) ,Y).

Then

8(9Z,VxY) = —g(Vx(9Z2),Y),
i.e. VxY is normal to D_. Moreover from (3) and Remark 2 it follows that, for each i €
{1,...,s},8(VxY,&) = —g (Y, Vxé) = 0. Then we have (30). The proof of (31) is analogous.
If X eI'(Dy), Y € T'(D-) then from (30) and Remark 2 we get that for each Z € IT'(D,.)
2 (VxY,Z) = —g (Y, VxZ) = 0 and then we have (32). Analogously we prove (33). O

Remark 4.3. It follows from (30) and (31) that D+ define two orthogonal totally geodesic
Legendrian foliations F1 on M.

Lemma 4.6. Let M be an almost Kenmotsu f-manifold verifying the (x, i, v)-nullity condition.
Then for each X,Y € T'(TM) we have

(Vxh)Y = (k+1) g (¢X,Y) =g (hX,Y) & —n (Y) h (X + hoX)

— un (X) hY + (v —2) 57 (X) hY. (34)
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Proof. Letbe X,Y € I' (D). From Proposition 2, i) we get g (;Y, {;) = 0. Taking the derivative
of this equality of the direction X we obtain

(Vxh)Y = —g <Y, X + hfgox) &

Then, we write any vector field X on M as X = X +1;(X)¢;, X denoting positive component
of X in D, and, using (18) and (8), we have

(Vxh)Y = (Vx, h) Yo +7 (V) (Vx, h) E+7(X) (—pu@h +vh —2h) Y
— g (VX +129X) =7 (Y) (hX + H2pX) +7 (X) (~pghY +vhY — 2hY).

O

Remark 4.4. Let M be an almost Kenmotsu f-manifold verifying the (x, y, v)-nullity condition.
Then using (27), (34) and (8) we get, for all X,Y € T(TM)

(Vxgh) Y = (c+1) g (X, Y) T+ (9X, hY)E —77 () phX

(35)
+ (k+ D)7 (Y) @>X 4+ uif (X) hY + (v — 2) 7 (X) @hY.

Lemma 4.7. Let M be an almost Kenmotsu f-manifold verifying the (x, u, v)-nullity condition.
Then for each X,Y,Z € T (D) we have

RxyhZ —hRxyZ = s[x{g (Z, oY) X — g (Z, oY) phX — g (Z, X) Y + g (Z, X) @hY
+8(Z,X) oY =g (Z, phX) oY =g (Z,Y) 9X + g (Z, phY) ¢X}
+8(Z,¢Y) X =g (Z,¢Y) phX — g (Z,9X) Y + g (Z, 9X) phY
—8(Z,hY)X+g(Z,hY) phX +g(Z,hX)Y — g (Z,hX) phY
—9(Z,X)hY +g(Z,X) oY + g (Z, phX) hY — g (Z, phX) Y
+9(Z,Y)hX —g(Z,Y) X — g (Z, phY) hX + g (Z, phY) ¢X].

(36)

Proof. Let X,Y,Z € I'(TM). Then by a direct computation we get

(VxVyh) Z = (k+1) [§(VxZ,¢Y)E+8(Z,(Vx9) Y)E+8(Z, 9 (VxY))E
+8(Z,9Y) (—9°X — ghX)] — g (VxZ,hY) T~ (Z,(Vxh) V)¢
— g (Z,h(VxY))E+g(ZNhY) ((sz + q)hX) — ¢ (VxZ,§) (hY + h2g0Y>
~8(2,Vx) (Y +129Y) 7 (2) (Vxh) Y =7 (Z) h (VxY)

(k+1)[7(Z) (Vx@)Y +7(Z) ¢ (VxY)] — plg (VxY, ) ohZ
~ g (Y, Vx8) hZ — 71 (Y) (Vxph) Z =7 (Y) 9h (VxZ)]
+(v=2)[g(VxY, &) hZ+g (Y, VxE)hZ+7(Y) (Vxh) Z+7 (Y)h(VxZ)],

where we used (34), (8) and the antisymmetry of V x¢. Hence, using the Ricci identity

RxyhZ — hRxyZ = (VxVyh) Z — (VyVxh) Z — (vpmh) Z,
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formulas (34) and (3), the symmetry of Vx (h o ¢), we obtain

RxyhZ —hRxyZ = (k+1) [8 (Z,(Vx) Y = (Vy9) X)E — g (Z,9Y) (X + qth)
+8(2,0X) (Y + ghY )] =g (Z,(Vxh) Y = (Vyh) X) &+ (Z,hY) (9*X + phX)
— ¢ (Z,hX) <q)2Y + qth) —¢(2Z,Vx¢) <hY + h2g0Y> +¢(Z,Vy¥) <hX + hzq)X)
—7(2) (Vxh) Y = (Vyh) X) + (k + 1) 77 (Z) (Vxe) Y = (Vy9) X)
+ul(8 (X, V¥¢) =8 (Y, Vx$)) ohZ =7 (Y) (Vxoh) Z + 7 (X) (Vyoh) Z]

+(v=2)[( (Y, Vx$) — 8 (X, Vy8)) hZ +7 (Y) (Vxh) Z =7 (X) (Vyh) Z].
(37)

If we take X, Y, Z € T' (D) then from (37), using identities (35), (27) and (8), we get (36). O

Lemma 4.8. Let M be an almost Kenmotsu f-manifold verifying the (x, u, v)-nullity condition.
Then for each X,Y,Z € T(TM) we have

Rxy9Z — oRxyZ = [ (77 (Y) 8 (¢X, Z) =77 (X) g (¢Y, Z)) B
+u (@ (Y)g(phX,Z) =77 (X) g (9hY, Z)) —v (77 (Y) g (hX, Z) — 77 (X) g (hY, Z))]¢
s[-8 (Z, gY + 1Y) (@*X + phX) + g (Z, 9X +hX) (@*Y + ghY )
<Z,g02X—|—q)hX> (¢Y +hY) — g<Z,g02Y+q)hY) (¢X +hX)]
—7(Z) [k (7 (Y) 9X =77 (X) @Y) + u (77 (Y) phX — 7 (X) phY)
v (77 (Y) hX —77 (X) hY)].

Proof. We proceed fixing a point x € M and local vector fields X, Y, Z such that VX, VY and
VZ vanish at x. Applying several times (27), using (8) and the symmetry of V¢?, we get in x

Vx ((Vye)Z) = Vy ((Vxe) Z)

=[g((Vxp)Y = (Vy@) X, Z) +¢ (Vxh) Y — (Vyh) X, Z)]Zs
(Z, pX + hX) (qozY + (th) —9(Z, Y +hY) (qozX + (phX)
+g <Z, (sz + q)hX) (pY +hY) —g <Z, q)zY + qth) (X +hX)]
7(Z2)[(Vxe)Y = (Vyo) X) + (Vxh) Y — (Vyh) X)].

From the last identity, using Rxy¢Z — ¢RxyZ = Vx (Vyp) Z — Vy (Vx¢) Z and (28), we
get the claimed identity. O

g

Remark 4.5. In particular, from Lemma 9 it follows that for a Kenmotsu f-manifold
(M, ¢,¢i, 17]-,g) the following formula holds, for all X,Y,Z € T(TM),

Rxy9Z — oRxyZ = (7 (X) g (¢Y,Z2) =7 (Y) 8 (9X, Z))

s[-8 (Z,9Y) 9*X + 8 (Z,9X) Y +8 (2,0°X) 9Y — g (Z,¢*Y ) 9X]
—7(2) [(7 (Y) 9X =77 (X) 9Y)].



ALMOST KENMOTSU f-MANIFOLDS 17

Theorem 2. Let M be an almost Kenmotsu f-manifold verifying the (x, u, v)-nullity condition
withx < —1. Then foreach X,Y,,Z, €' (D), X_,Y_,Z_ €T (D-), we have
Rx_ vy Zy =s(k+1)[g(¢Y—, Z1) 9X_ —g (X, Zy) Y]
+sA[g(9X, Z1 )Y —g(9Y, Zy) X ],

Ry, v, Zy =s[8 (X4, Z4) Yy —g (Y4, Zy) X4 ]

+sA[g (Y, Zy) Xy — (X4, Zy) 9Y4 ], )
Ry v, Z- =sAg(Z-,¢Y1) Xy —g(Z-, 9X1) Y]
+s(x+1)[8(Z-,9Yy) Xy —g(Z—, ¢X1) 9Y4],

Rx,y Z-=—sg(Y-,Z )Xy +s(x+1)g (X1, Z-) Y- (39)
+sA[g(Y, Z) oXy —g(¢Xy,Z) Y],

Rx,y Zy =sg (X4, Zy) Yo —s(k+1) g (9Y—, Zy) 9Xy (40)
+sA[g (X, Zy) Y- — g (9Y—, Z1) X ],

Rx vy Z =s[g(X,Z )Y —g(Y,Z ) X] 1)

—sA (Y-, Z) X —g (X, Z_) oY ].
Proof. Firstof all, forany X,Y,,Z, € D, applying Lemma 7, we get

ARX, v, Zt —hRx, v, Zy = 25A% (8 (Z+4,Y4) 9X1 — 8 (Zy, Xy) 9Y4)

and by scalar multiplication with W_ € D_, one has

20 (Rx, v, Z+, W-) = 25A% (g (Z+,Y+) g (9Xo, W-) — g (Z4, X+) g (Y, W-))
from which, being A # 0,

(RX+Y+Z+I W*) =sA (g (Z+/ Y+) 8 (GDXJH W*) -8 (Z+/ X+) g (QDY+, W*)) . (42)
With a similar argument, forany X, W, € D, and Y_,Z_ € D_, we also obtain

(Rx, v Z-, W) = (k+1)s (g (Z—, ¢X+) g (Y-, W) — g (Z-,Y_) g (X4, W4))  (43)
and, from (42), by symmetries of the tensor field R, forany X ,Y,, W, € Dy and Z_ € D_

(Rx, v, Z—, W4) =sA(g(Z—, ¢Y1) g (X1, W) — g (Z—, 9X1) g (Y4, W4)). (44)
Next, fixed a local ¢-basis {ei,..., eqn, @e1,...,pen, 1,...,¢}, with e; € Dy we compute
Rx,y,Z—. The nullity condition implies g (RX LY +Z,,é,‘i) = 0, while using the first Bianchi
identity, (43) and (44), we get
8 (Rx, v, Z—,ei) = As (g (Z-, 9Y+) g (X1 e1) — 8 (Z—, 9X1) g (Vi)
8 (Rx,v, Z-, per) = (k +1)s (g (9Z—, X+) g (Y1 00) — g (9Z-,Y4) g (X4, €1)),
so that, summing on 7, the expression for Ry, y, Z— follows.

The terms Ry y Z, and Ry, y Z_ are computed in a similar maner. Now, acting by ¢ on
the formula just proved and using Lemma 10, we get

Ry, v, 9Z-=s(g(¢Y,Z-) X4 =g (X1, Z) Y1) =sA (g (¢Y1, Z-) X1 —g (X1, Z) 9Y7).

Writing this formula for ¢Z_, by the compatibility condition, we have the result for Rx, y, Z.
Similar computation yields Rx y Z_. Analogously, using the third formula and Lemma 10 we
obtain Ry y Z. O
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Now we are able to compute sectional curvature.

Theorem 3. Let M be an almost Kenmotsu f-manifold verifying the (x, u, v)-nullity condition
with k < —1. Then the sectional curvature K of M is determined by

N [ x+pur ifX €Dy,
K(X,¢) =xg(X,X)+ug (hX,X) +vg (¢phX, X) —{ k—uA ifXeED. (45)
s ifX,Y €D,

K(X,Y)={ s ifX,Y€D_, (46)
—s—s(k+1)(g(X,9Y)) ifXeDy, YED_.

Proof. Identities (45) follow directly from (5), while identities (46) are consequences of (38), (41)
and (39) respectively. O

Corollary 4.1. Let M be an almost Kenmotsu f-manifold verifying the (x, u, v)-nullity condi-
tion with k < —1. Then the Ricci operator verities the following identities

Q=s[(=2) ¢+ ph+ 2 (n=1)+v) (poh)| +2nx7 &, t

Qop—goQ=2s[uhog+((n—1)+v)h. (48)

Proof. Let {e1,...,en, @e1,...,@en,G1,...,Cs} be alocal ¢-basis such that {ej,...,e,} is a basis
of Dy and let X = X4 + X_ € D4 @ D_. From (38), (39) and (10) we get

QX =s(—2+pur) Xy +s(2A (n—1) +v) pX,. (49)
On the other hand from (40) and (41) we obtain

Taking into account (49), (50) and Q¢; = 2n«x¢, we get (47). Finally, identity (48) easily follows
from (47). O

Corollary 4.2. Let M be an almost Kenmotsu f-manifold verifying the (x, u, v)-nullity condi-
tion with x < —1. Then the scalar curvature of (M, g) is constant and verifies the following
identity

S=2ns(xk(2—n)—2n). (51)

Proof. Let {ey,...,en, @e1,...,¢en, C1,...,Cs} be alocal ¢-basis such that {ey,...,e,} is a basis
of D4 Then from (38), (39) and (5) we have

¢ (Qej,e;) = ksn + puAsn — s (k + 1) n* — sn?. (52)
Furthermore, from (40), (41) and (5) we get
g (Qge;, pe;) = ksn — pAsn — s (k + 1) n? — sn’. (53)

Then (52), (53) and (21) yield (51). O
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5 EXAMPLES

Example 1. Let R*"*S be (2n + s)-dimensional real vector space with standard coordinates
(X1, X, Y1, -, Yn,21,--.,2s) and

M={(x1,. .., X, Y1, -, Yn,21,---,25) |2i #0,1 <i<s,ne N, n>1}

be a (2n + s)-dimensional manifold. Foreachi =1,...,nandk=1,...,s

0 0
2 . ;
Xi = <— (Zi + 1) + \/(Zi + 1) +€221> a— +€Z aZi’

i
J
Y, = <zi+1i \/(zi+1)2+ezzf> =

Yi

éi:a_/

Zj
is a basis of M.
Then, foreachi,j=1,...,nandk =1,...,s we obtain

, N
[X;,Y;] = e (22, + 3 + 26%) 5y Y] =0
d

0 J
. F] — . 2z;\ 7 Lz 2 . A — . 2z;\
[Xz,gz] = <22Z +3+42e ) o, e 3z [Yz,gz] = (22Z +1+42e ) ayi,

X = i . 2z d Zi . I, P i
(X, Xj] = % (22 +3—2e )a—xj+e (22 +3 -2 )axi'

If we take ; = %, we get
1

= 1 ;
3Z<( dxc; + dy?)+2dzfzf
=1

=1\ (zi +1) + \/(Zi+1)2+ezzi (zi+1) + \/(zi+1)2+e221 j
0 0
qogi - O/ Y (a_xl> - _a_yir

o(2)-2 - )
Wi/ i g (zi41) £ /(22 +2)% + e O

Then, we have an almost metric f-structure (¢, Gjr Mis g) on M. On the other hand, for each
i=1,...,s we obtain drnj; = 0. Moreover

() ;
Dji:=g <8xi'¢8yi> <_ (zi+1) & \/(zi +1)%+ 622i> <(Zi +1)+ \/(Zi 17+ ezz,)

and foreachi,j=1,...,s CDZ-]- = 0. Then we get

2 2
v =8 (503, ) =
_ 1 dx; A\ dyi,
<— (zi+1) + \/(zi +1)° +e22f> <(zi +1)+ \/(zi +1)2 +e22i)

4
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and

dq):2XS:dZ]/\ (Xn:dxl/\dyl> :Zﬁ/\QD

j=1 i=1
Since the Nijenhuis torsion tensor of this manifold is not equal to zero and in view of this
expression we get an almost Kenmotsu f-manifold.

Example 2. Let R*"*S be (2n + s)-dimensional real vector space with standard coordinates
(X1, X, Y1, -, Yn,21,--.,2s) and

M={(x1,..., X, Y1, -, Yn,21,---,25) 12i #0,1<i<s,me N, n>1}

be a (2n + s)-dimensional manifold. Foreachi =1,...,nandk=1,...,s

<1:|:\/1+e22> ‘ Zaa
Yi:<1i\/@)a—
1

0
gi_a_zi/

is a basis of M.
Then, foreachi,j=1,...,nandk =1,...,s, we obtain

0
(X Y] =2z, [ Y] =0,
0 8 0
. ] = — ZZI' 2 i ] = ZZI'_
(X, Ci 2e o 18 [Y;, &i] = £2e 3y

a a

If we take n; = —

1 1 B
- d2>+ dz2,
$ zZ%(lim 1+ V1o i Jg j
d )
(Pgi =0, @ <a—x1> = —a—yi,

(i) I )

7\ 0X; 24+ /4 + 4627 0z;

Then, we have a metric f-structure ((p, CjrMis g) on M. On the other hand, for eachi = 1,...,s
we obtain dy; = 0. Moreover

B (i i>:_ 1
CTEN ) T (e Vv ) (12 Vi)

and foreachi,j=1,...,s ®;; =0. Then we get

q)ii =g <i’ q)i> = — 1 dxz- /\dyi,
ox;" " 9y; <—1 +V1+ e22f> <1 +V1+ eZZi)
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and

S n
AP =2) dzj A (dei/\dyi) =2i] A D.
j=1 i=1

Since the Nijenhuis torsion tensor of this manifold is equal to 0 and in view of these expres-
sions we get a Kenmotsu f-manifold.

[1]
(2]

3]
|
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B craTTi posrasiaaroThesl y3araabHeHHSI Malke KeHMoTcy f-mHOrOoBMAIB. OTpMMaHO OCHOBHI
BAACTMBOCTI PiMaHOBOI KpMBM3HM, CeKLIVHIX KPUBUH i CKAASIPHOL KPUBV3HM AASI TaKMX TUITiB MHO-
roBuaiB. HacaMxiHellb HaBeA@HO ABa MPUKAAAN.

Kntouosi cnosa i ppasu: f-crpykrypa, maiixe KeEMOTCY f-MHOTOBVAML.



