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STABILITY OF TRIPLED FIXED POINT ITERATION PROCEDURES FOR MIXED
MONOTONE MAPPINGS

Recently, Berinde and Borcut [11] introduced the concept of tripled fixed point and by now, there
are several researches on this subject, in partially ordered metric spaces and in cone metric spaces.

In this paper we introduce the notion of stability definition of tripled fixed point iteration proce-
dures and establish stability results for mixed monotone mappings which satisfy various contractive
conditions. Our results extend and complete some existing results in the literature. An illustrative
example is also given.

Key words and phrases: tripled fixed point, stability, mixed monotone operator, contractive condi-
tion.
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INTRODUCTION

Banach-Caccioppoli-Picard Principle was applied on partially ordered complete metric
spaces by Ran and Reueings [34] and starting from their results, Bhaskar and Laksmikan-
tham [12] extend this theory to partially ordered produced metric spaces and introduce the
concept of coupled fixed point for mixed-monotone operators of Picard type, obtaining re-
sults involving the existence, the existence and the uniqueness of the coincidence points for
mixed-monotone operators T : X?> — X in the presence of a contraction type condition.

This concept of coupled fixed points in partially ordered metric and cone metric spaces
have been studied by several authors, including Abbas, Ali Khan and Radenovic [1], Berinde
[5-7], Choudhury and Kundu [17], Ciric and Lakshmikantham [18], Karapinar [23], Laksh-
mikantham and Ciric [24], Olatinwo [25], Sabetghadam, Masiha and Sanatpour [37].

Recently, Berinde and Borcut [11, 16] obtained extensions to the concept of tripled fixed
points and tripled coincidence fixed points and also obtained tripled fixed points theorems and
tripled coincidence fixed points theorems for contractive type mappings in partially ordered
metric spaces. Research on tripled fixed point was continued by Abbas, Aydi and Karapinar
[2], Aydi and Karapinar [4], Amini-Harandi [3], Borcut [13-15], Rao and Kishore [34].

In the case of fixed points of an operator T : X?> — X, the stability of a fixed point iterative
procedures was first studied by Ostrowski [33] in the case of Banach contraction mappings
and this subject was later developed for certain contractive definitions by several authors (see
Harder and Hicks [19], Rhoades [35,36], Osilike [30,31], Osilike and Udomene [32], Berinde [8—
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10], Jachymski [22], Olatinwo [26,27], Imoru and Olatinwo [20], Imoru, Olatinwo and Owojori
[21,29] etc.).

On the other hand, adapting the concept of stability from fixed point iterative procedures,
Olatinwo [28] studied the stability of the coupled fixed point iterative procedures using some
contractive conditions for which the existence of a unique coupled fixed point has been estab-
lished by Sabetghadam, Masiha and Sanatpour [37].

Our aim in this paper is to introduce the concept of stability for tripled fixed point iterative
procedures and to establish stability results for mixed monotone mappings satisfying various
contractive conditions by extension from coupled fixed points to tripled fixed points of con-
tractive conditions employed by Olatinwo [28].

1 PRELIMINARIES

Let (X, <) be a partially ordered set and d be a metric on X such that (X, d) is a complete
metric space. Berinde and Borcut [11] endowed the product space X> with the following partial
order

(u,v,w) < (x,y,z) <= x>u,y<v,z>w, (u,0,w),(x,y,z) € X3,

Definition 1 ([11]). Let (X, <) be a partially ordered set and T : X> — X be a mapping.
We say that T has the mixed monotone property if T(x,y,z) is monotone nondecreasing in x,
monotone nonincreasing in y and monotone nondecreasing in z, that is, for any x,y,z € X,
x1<x = T(x,y,2) <T(xyz), xneX
n<y = Ty,z)=2T(xy,z), ypeX
71520 = Txyz)<Txyz) z21,22€X
Definition 2 ([11]). An element (x,vy,z) € X° is called tripled fixed point of T : X3 — X, if

T(x,y,z)=x, T(y,x,y) =y, T(z,y,x) =z
A mapping T : X> — X is said to be a (k, y, p)-contraction if and only if there exists three
constantsk > 0,4 > 0,0 > 0,k+ p+p < 1,such that Vx,y,z,u,v,w € X,
d(T(x,y,2), T(u,v,w)) < kd(x,u)+ pud(y,v) + pd(z, w). (1)

In relation to (1), we introduce some new contractive conditions.

Let (X, d) be a metric space. Foramap T : X3 — X there exist a, as, a3, by, by, b3 > 0, with
a;+apy+asz < 1,b;+by+bs <1, such that Vx,y,z,u,v,w € X we introduce the following
definitions of contractive conditions:

(1) d(T(x,y,2), T(u,0,w)) < ard (T(x,y,2),x) + brd (T(u, v, w),u); ()
d(T(y,x,y), T(v,u,0)) < ad (T(y,x,y),y) + b2d (T(v,u,0),0); (3)
d(T(w,y,x),T(z,0,u)) <asd(T(z,y,x),z) + bzd (T(w,v,u),w); 4)

(i) d(T(x,y,2), T(u,v,w)) < ard (T(x,y,2),u) + brd (T(u, v, w), x) ; (5)
d(T(y,x,y), T(v,u,0)) < azd (T(y,x,y),0) + b2d (T(v,u,0),y) ; (6)
d(T(w,y,x),T(z,0,u)) < azd (T(z,y,x),w) + bsd (T(w,v,u),z). (7)

Let A,B € M(m,n)( R) be two matrices. We write A < B, if a;; < bjj foralli = 1,m,j =1,n.
In order to prove our main stability result in this paper we give the next
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Lemma 1 ([8]). Let {a,}, {bn} be sequences of nonnegative numbers and h be a constant, such
that0 < h < 1 and
ay1q1 < hay, +b,, n>0.
If lim b, = 0, then lim a,, = 0.
n—oo n—oo
We also give the next result which extends Lemma 1 to vector sequences, where inequalities
between vectors means inequality on its elements.

Lemma 2. Let {u,}, {v.}, {wn} be sequences of nonnegative real numbers. Consider a matrix
A € M33(R) with nonnegative elements, such that

Up41 Uy En
Vpa <A-| vy, + | du , n>0, (8)
Wn+1 Wy Yn

with

(i) lim A" = Os;
n—o00

(i) ¥ e <00, Y O <ooand ) i < oo.
k=0

k=0 k=0
&n 0 Uy 0
If im | &, =| 0 |, then lim | v, =10
n—o0 n—o0

Proof. For A =0 € M3 3), the conclusion is obvious.
We rewrite (8) with n = k and sum the inequalities obtained for k = 0,1,2,...,n. After
doing all cancellations, we obtain

Up41 Up n En—k
v | <A o |+ AN Sk ] )
k=0

Wn+1 wo Yn—k

From (ii) it follows that the sequences of partial sums {E, }, {A,} and {I',}, given respec-
tivelyby En=¢+ea+ - Fen, Ay =0+01+---+dand Ty, = yo+ 91+ -+ + yp, for
n > 0, converge respectively to some E > 0, A > 0 and I' > 0 and hence, they are bounded.

E, 1
Let M > 0 be such that | A, <M-| 1 |,Vn > 0.By (i) we have that Ve > 0, there
I, 1
exists N = N(e) such that A" < ﬁ -I3,YVn>N,M>D0.
We can write
n En—k €0 En—N
YA 6, | =A" 6 |+ +AN | Sn
k=0 Y-k Yo Yn-N

En—N+1 En
+ ANV s, N |+ B 6
Tn—-N+1 Yn
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But
€0 En—N . [/ €0 En—N
AT G0 | AN b | Sl b [t | Gaew
Yo Yn—N L Yo Yn—N
E,_N 1 1
e e e
2M U 2M 1 2 1

for all n > N. On the other hand, if we denote A’ = max {I3, 4, ..., AN~1}, we obtain

En—N+1 €n [ [ €n-N+1 €n
AN On—N+1 4+ 41 On < A’ N 4o+ 5
,)/I’Z—N-i-l ')’n L ,)/I’Z—N-i-l 'Yn
En_‘Ean
= A’ Ap —Dp-N
Ipn—Tu-n

As N is fixed, then im E, = lim E,_ny = E, lim A, = lim A,_y = A,and lim T, =
n—o0 n—o0 n—oo n—o0 n—o00

lgn I',—n = TI', which shows that there exists a positive integer k such that
n—oo

E,—E,_N . 1
A/ An - Aan < 5 1 7 vn 2 k.
Iy —Tn-n 1
Now, for m = max {k, N}, we get
€0 €n 1
Al 6 | +--+ | 4 | <el 1|, Vn >m,
(0 Yn 1
n E€n—k
and therefore, lim Y. A* [ 4, | =0.
n—o0 k=0
TYn—k
Now, by letting the limit in (9), as lgn A" =0, we get
n—oo
Uy 0
lim { v, | =10 [,
n—oo
Wy 0
as required. O

2 STABILITY RESULTS

Let (X, d) be a metric space and T : X> — X a mapping. For (xg, ¥o,2z0) € X° the sequence
{(xn,Yn,zn)} C X® defined by

xn+1 = T(xi’l/ ]/n/ Zn); ]/n+1 = T(yi’l/x}’l/ y}’l)/ Z}’H—l = T(Zi’l/ ]/n; xn); (10)

withn =0,1,2,...,1s said to be a tripled fixed point iterative procedure.
We give the following definition of stability with respect to T, in metric spaces, relative to
tripled fixed points iterative procedures.
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Definition 3. Let (X, d) be a complete metric space and
Fix(T) = {(x*,y*,z*) e X3 | T(x*, v, z") = x%, T(y*, x*,v*) = v*, T(z",y*, x*) = z*}

is the set of tripled fixed points of T.

Let {(xn,yn,zn)} C X3 be the sequence generated by the iterative procedure defined by (10),
where (xg,yo,2z0) € X° is the initial value, which converges to a tripled fixed point (x*,y*,z*)
of T.

Let {(uy, vy, wy)} C X® be an arbitrary sequence. Foralln = 0,1,2,... we set

en=d (un—i-lr T (un/ On, wn)) , Op=d (Un—i-lr T (Un/ Un, Un)) , Yn=d (wn+1r T (wn/ On, un)) .

Then the tripled fixed point iterative procedure defined by (10) is T-stable or stable with
respect to T, if and only if

Jggo(en,én,vn) = Ogs Implies that r}iir;o(un,vn,wn) = (x*,y",z").

Theorem 1. Let (X, <) be a partially ordered set. Suppose that there exists a metric d on X
such that (X, d) is a complete metric space. Let T : X> — X be a continuous mapping having
the mixed monotone property on X and satisfying (1).

If there exists x¢, Yo, zo € X such that

xo < T(x0,Y0,20), Yo > T(yo,%0,y0) and zo < T(zo,Y0,X0),

then there exist x*,y*,z* € X such that

x* =Ty 2", y" =Ty, x"y") and z*=T(z"y" x%).

Assume that for every (x,y,z), (x1,y1,21) € X3, there exists (u,v,w) € X3 that is compara-
ble to (x,y,z) and (x1,y1,21). For (xo,v0,20) € X2, let {(xn,yn,zn)} C X° be the tripled fixed
point iterative procedure defined by (10). Then the tripled fixed point iterative procedure is
stable with respect to T.

Proof. From the suppositions of the hypothesis, Berinde and Borcut [11] proved the existence
and uniqueness of the tripled fixed point and now, using these results, we can study the sta-
bility of the tripled fixed point iterative procedures.

Let {(xu,yn,zn)} C X3, &y = d(tps1, T (thy, v, wy)), 6n = d(vui1, T (0, un,vy)) and
Yn=4d (wn+1z T (wnl On, un))-

Assume also that lim ¢, = lim §, = lim 7, = 0 in order to establish that lim u, = x%,

n—oo n—00 n—00 n—o00

lim v, = y* and lim w, = z*.
n—o0 n—o0

Therefore, using the (k, u, p)-contraction condition (1), we obtain

d(ups1,x°) < d(tyg1, T (un, vp, wy)) +d(T (n, 0p, wy) , x¥)
= d(T (un, on,wn), T(x",y",27)) + &n (11)
< kd(up, x*) + ud(vn, y*) + pd(wn, z%) + €n,

A(Vp11,¥") < d(0ng1, T (0, tn, vn)) +d(T (On, tun, 00) ,y*)
=d(T (vn, ttn,vn), T(y*, x5, y")) + On (12)
< kd(vn,y*) + pd(un, x*) + pd(vn, y*) + 6n,
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d(wyi1,2") < d(wys1, T (Wn, 0n, ttn)) + d(T (W, 0, tn) , 2%)

= d(T (wn, vn, un), T(z*,y", 7)) + Tn (13)

< kd(wy,z*) + ud(vn, y*) + pd(ttn, x*) + vn.
From (11), (12) and (13), we obtain

d(uyi1,x*) kK u p d(uy, x*) €n
dOpr,y") | < | # ke O | dlony®) |+ b |-
d(wpy1,2%) pu k d(wn, z*) Tn

kewop
WedenoteA:(y k+p O),where0<k+y+p<1,asin(1).
pnk

In order to apply Lemma 2, we need that A" — 0, as n — co. Simplifying the writing,

am b1 oo
A= (dl e1 fl ),wherea1+b1~|—cld1+€1+f1g1+b1+h1k+V+P<1-

g1 b
Then

k pw p kuw p
A= uk+p 0| | u kd+p 0
P u k p Bk

K2+ u? + p? 2kp +2up 2kp ay by ¢
= 2kp+ou K2+ u?+p*+ 2k pwo | ==\ d2 ea fo |,
2kp + p? 2k + 2pp K2 + p? g by hy

wherea, +by+cy=do+er+fo=g +br+h = (k+u+p)? <k+u+p<1.
Now, we prove by induction that

a, b, cy
A" = dn ey fn ’
n by hy

an+by+cen=dpi+en+fu=gn+bu+thy=k+p+p)" <k+pu+p<l. (14)

where

If we assume that (14) is true for 1, then since

a, b, cy k woop
A = d, ey fu |- [ p kK+p O
8n bu opn k

kan, + uby, + pc  nan + kb, + pby + pc,  pay + key,
= kdn"’ﬂen‘f‘an ,udn+k3n +Pen+,ufn Pdn+kfn ’
kgn + ]/lbn + Phn UEn + kb, + an + th 08n + khy,

we have
Ayy1 + byy1 + cpp1 = kan + uby + pcy + nan + kby, + pby + pcy + pay + key,
=(k+u+p)an+ k+pu+p)bp+ (k+u+p)cn
= (k+pu+p)(an+bu+cn) = (k+p+p)(k+p+p)
=k+pu+p)" <k+put+p<l
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Similarly, we obtain
dn+1 + €n+1 +fn+1 = gn+1 + bn+1 —+ hi’l+1 = (k + U +p>n+1 <k + U +p < 1.

Therefore, lgn A" = O3 and now, having satisfied the conditions of the hypothesis of
n—oo

Lemma 2, we can apply it and we get

Up X
. _ *
i (o = ().
wy z
so the tripled fixed point iteration procedure defined by (10) is T-stable. O

Remark 1. Theorem 1 completes the existence theorem of tripled fixed points of Berinde and
Borcut [11] with the stability result for the tripled fixed point iterative procedures, using mixed-
monotone operators.

Corollary 1. Let (X, <) be a partially ordered set. Suppose that there exists a metric d on X
such that (X, d) is a complete metric space. Let T : X> — X be a continuous mapping having
the mixed monotone property on X.

There exists k € [0,1), such that T satisfies the following contraction condition

d(T(x,y,2), T(u,0,w)) < g [d(x,u) + d(y,0) + d(z,w)], (15)

foreach x,y,z,u,v,w € X, withx > u,y <vandz > w.
If there exists x¢, Yo, zo € X such that

xo < T(x0,¥0,20), Yo > T(yo,x0,v0) and zo < T(zo,Yo,x0),
then there exist x*,y*,z* € X such that
=Ty z%), y"' =Ty x"y") and z"=T(z"y" x").

Assume that for every (x,v,z), (x1,y1,21) € X°, there exists (u,v,w) € X> that is compara-
ble to (x,y,z) and (x1,y1,21). For (xo,y0,20) € X>, let {(xn,yn,zn)} C X3 be the tripled fixed
point iterative procedure defined by (10). Then, the tripled fixed point iterative procedure is
stable with respect to T.

Proof. We apply Theorem 1, fork =y = p := 3. O

Remark 2. Corollary 1 completes the existence theorem of tripled fixed points of Berinde and
Borcut [11] with the stability result for the tripled fixed point iterative procedures, using mixed-
monotone operators.

Theorem 2. Let (X, <) be a partially ordered set. Suppose that there exits a metricd on X such
that (X, d) is a complete metric space. Let T : X3 — X be a continuous mapping having the
mixed monotone property on X and satisfying (2), (3) and (4).

If there exist xg, Yo, zo € X such that

xo < T(x0,¥0,20), Yo > T(Yo,x0,%0) and zo < T(zq,Y0,x0),
then there exist x*,y*,z* € X such that

x* =Ty z%), y' =Ty x"y") and z"=T(z"y" x").
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Assume that for every (x,y,z), (x1,y1,21) € X3, there exists (u,v,w) € X3 that is compara-
ble to (x,y,z) and (x1,y1,21). For (x0,y0,20) € X3, let {(%n,Yn,2zn)} C X3 be the tripled fixed
point iterative procedure defined by (10). Then, the tripled fixed point iterative procedure is
stable with respect to T.

Proof. Let {(xu,yn,zn)} C X3, &n = d (ups1, T (n, 0n,wp)), 6p = d (041, T (0, i, vy)) and
Yn = d(Wyt1, T (W, Un, tiy)). Assume also that nh_r>n &y = nlgn on = hm Yn = 0 in order to

establish that lim u, = x* lun v, =y and lim w, = z*
n—o00 n—00

Therefore, using the contractlon condition (2), we obtain

A(ups1,x*) < d(uyir, T (tty, 0n, wn)) + d(T (Un, 0y, wy) , x*)

d(T (uy, vn, wy), T(X*,y",2°)) + e

< ad (T(x*,y*,2%),x*) + b1d (T (un, 0n, Wn), Un) + €n

< apd(x*, x*) 4+ b1d (T (Un, On, Wn), Upi1) + b1d(Uyp1, X°) + brd(x*, un) + €
ard(x*, x*) + bid(uyq, X¥) + byd(x*, uy) + (b1 + 1)ey.

Hence, (1 —by)d(uy 41, x*) < byd(x*, u,) + ¢, wheree), := (by +1)e, + a1d(x*, x*). Passing

it to the limit and applying Lemma 1 for — b € [0,1), we obtain that lgn Uy = x*.
n—oo

Now, using the contraction condition (3) we obtain

d(0n41,¥") < d(Ont1, T (0n, ttn, 0n)) + d(T (On, tin, On) ,Y)
= d(T (vn, un,0n), T(y*, x*,y")) +6
< ad (T(y*, x*,y%),y") + bad (T (vn, Un, vn), vn) + oy
< ad(y*,y*) + bod (T (Vn, tin, 0n), Ont1) + b2d (011, ¥*) + b2d(y™, vn) + 6n
= ad(y*,y") + bad(vys1,y") + bod (v, vy) + (b + 1)5y.
So, (1 —bp)d(vy41,y*) < bad(y*,vn) + 0, where 6, := (b + 1)d,, + axd(y*, y*). Passing it
to the limit and applying Lemma 1 for =5~ b € [0,1), we obtain that nh_r)r;o vy =y".

Similarly, using the contraction Condltlon (4), we obtain

d(wps1,2%) < d(wys1, T (zn, 00, un)) +d(T (zn, On, Un) ,27)
= d(T (wy, on, un), T(Z",y*, x%)) + n
< azd (T(z*,y*,x*),z*) + b3d (T(wn, On, tn), Wn) + Yn
< azd(z*,2") + b3d (T(wy, Oy, thn), Wyt1) + b3d(wyi1,2") + b3d (2", wy) + vn
(

= azd(z*,z") 4+ bsd(wy41,2%) + b3d(z*, wn) + (bs + 1)vn

Therefore, (1 — b3)d(wy+1,2*) < bsd(z*,wy) + 7, where 7y, := (b3 + 1)y, + azd(z*,z*).
Passing it to the limit and applying Lemma 1 for 1b € [0,1), we obtain that r}gn w, = z* and
then we get the conclusion. O

Theorem 3. Let (X, <) be a partially ordered set. Suppose that there exists a metric d on X
such that (X,d) is a complete metric space. Let T : X> — X be a continuous mapping having
the mixed monotone property on X and satisfying (5), (6) and (7).

If there exist xg, Yo, zo € X such that

xo < T(x0,Y0,20), Yo > T(yo,%0,y0) and zo < T(zo,Y0,X0),
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then there exist x*,y*,z* € X such that
x* =Ty z"), y" =Ty, x"y") and z*=T(z"y" x¥).

Assume that for every (x,v,z), (x1,y1,21) € X°, there exists (u,v,w) € X> that is compara-
ble to (x,y,z) and (x1,y1,21). For (xo,v0,20) € X3, let {(xn,yn,zn)} C X° be the tripled fixed
point iterative procedure defined by (10). Then, the tripled fixed point iterative procedure is
stable with respect to T.

Proof. Let {(xn,yn,zn)}:fzo C X3, en =d (ups1, T (thn, v, wy)), 6y = d (0541, T (0y, tn, vy)) and
Yn=4d (wn+1z T (wnl On, un))-
Assume also that lim, ;0 €&, = lim, 06y, = lim,_e Yy = 0 in order to establish that
Therefore, using the contraction condition (5), we obtain
d(un+1/ x*) < d(un+1/ T (un/ On, wn)) + d(T (un; On, wn) ’ x*)
=d(T (un,vn, wy), T(x",y",2%)) + €
<a1d (T(x*,y*,z%), up) + b1d (T (thy, vy, wy), x*) + €4
< a1d(up, x*) + b1d (T (tty, On, Wi ), Un) + b1d(tn, x*) + €4
= (a1 + by)d(un, x*) 4+ €n + brg—1.

Hence, passing it to the limit and applying Lemma 1 for & := a3 +b; € [0,1) and for

e = e, + b1, _1 — 0, we obtain that lim,, e 14, = x*.

Now, using the contraction condition (6), we obtain
d(0n41,¥") < d(Ont1, T (On, tun, 0n)) + d(T (On, tin, vn) ,y*)
= d(T (vn, un,vn), T(y*, x*,y")) + 6n
< apd (T(y*, x*,y"),vn) + bod (T (0, Un,0n),y") + n
< axd(vn, y*) + bad (T(vn, tn, 0n), 0n) + bad (v, y*) + 6
= (ap + b2)d(vn,y*) + 0n + b2dy_1.
So, passing it to the limit and applying Lemma 1 for h := a; + by € [0,1) and for 4, :=
On + b20,—1 — 0, we get im0 vy, = y*.
Similarly, using the contraction condition (7), we obtain
d(wpi1,2%) < d(wpi1, T (2n,0n, tn)) +d(T (24, On, Un) ,2°)
= d(T (wn, vn,un), T(z",y", X)) +
< asd (T(z",y",x*), wy) + b3d (T(wn, vn, un),z*) + Tn
< azd(wp, z") + b3d (T(wy, Oy, tin), Wn) + bzd(wy, z2*) + vn
= azd(wy, z*) + bad(wy, z*) 4+ b3d(T(wp, Uy, tn), Wn) + Yn
= (ag + b3)d(wy,z*) + vn + b3yn—1-
Hence, passing it to the limit and applying Lemma 1 for h := a3 + b3 € [0,1) and for
Y := Tn+ b3y,_1 — 0, we obtain that nlglc}o wy = z* and then we get the conclusion. 0

3 ILLUSTRATIVE EXAMPLE

Let (X, d) be a complete metric space, where X = R, d(x,y) = |x — y|. Consider a continu-

ous and mixed monotone mapping T : R® — R, with T(x,y,z) = %
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Berinde and Borcut [11] proved the existence and the uniqueness of the tripled fixed point

of T, respectively (x*,y",2') = (5, 4, &) using (x0,90,20) = (5, % % ).

Forx = %, T satisfies the contraction condition (15), i.e.,
A(T(x,y,2), T(u,0,w)) < g [d(x,u) + d(y,0) +d(z,w)],

foreach x,y,z,u,v,w € X, withx > u,y <vand z > w.
We apply Corollary 1 in order to prove the stability of the tripled fixed point iteration
procedure.

Let {(x4,yn,zn)} C R3 be the sequence generated by the iterative procedure defined by

(10), where (xo, yo,z0) = <%, %, %) € R3 is the initial value, which converges to a tripled fixed

point (x*,y*,z*) = (%, %, 11—0) of T.
Let {(uy, vy, wy)} C R3 be an arbitrary sequence. Foralln =0,1,2,... set

en=4d (un—i-l/ T (un; On, wn)) , On=d (Un—i-l/ T (Unz Un, Un)) , Yn=4d (wn+1/ T (wn; On, un)) .
Assume that lgn (€n,0n,Yn) = Oga. Then
n oo

Zun - Zvn + ZWn + 1

en =d (Upy1, T (Un, Op, wy)) =

4

Un+1 — 12

4

51’! =d (U?l-i-l/ T (vi’l/ Uy, v}’l)) -

2wn - Zvn +2un + 1
12

4

Yn =d (Wpi1, T (W, vn, un)) = ‘wnﬂ =

and passing to the limit for n — oo, we obtain that

lim (uy,, vy, wy) = 111
n—eot 10710710 )
which is the unique tripled fixed point of T.
Hence, the tripled fixed point iterative procedure defined by (10) is T-stable.
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Timim 1. Cmiiikicme imepayitinux npoyedyp 019 HepyxoMol MouKy mpemvoeo nopaoKy MilaHux MOHO-
moHHuUx 8idobpasxcerv // Kapmarcbki maTem. my6a. — 2014. — T.6, Ne2. — C. 377-388.

Hemopaasso bepinae i BopkyT [11] BBeAM IOHSTTS HepyX0OMOI TOUKM TPeThOro MOPSIAKY i 3apa3
BXe € AeKiAbKa AOCAIAKEHD IIHOTr0 06’€KTY B YaCTKOBO BIIOPSIAKOBAHVIX METPWUHMX IIPOCTOpax i B
KOHYCOTIOAIGHIIX METPMYHMX IIPOCTOpax.

Y 11i11 cTaTTi BU3HAUEHO IOHSITTSI CTiMIKOCTI iTepalliliHol MpoleAypy HepyXOMOI TOUKM TPeThOTro
MIOPSIAKY 1 OTpMMaHi YMOBM CTilIKOCTi AASI MillTaHMX MOHOTOHHMX BiAOOGpa’keHb, SIKi 33 A0OBOABHSIIOTh
pisHi yMoBM cTHCKY. Lli pe3yAbTaTi po3IIMpPIOIOTh i AOTIOBHIOIOTH AesIKi BiAOMI pe3yAbTaTH. Taxox
IIOAQHO iAIOCTPATUBHMIA IIPMKAAA.

Korwouosi crosa i ¢ppasu: Hepyxoma TOUKa TPeTHOTO MOPSIAKY, CTiMKicTh, MilllaHMII MOHOTOHHMIA
OTlepaTop, YMOBM CTHUCKY.

Tumym W. Cmotikocmo umepayuoHHix npoyedyp 019 HenoosustcHoll mouku mpetnveeo nopsoka CMeuan-
HbIX MOHOMOHHbIX omobpadcenuii // KapraTckue marem. my6a. — 2014. — T.6, Ne2. — C. 377-388.

Heaasno bepurae 1 bopkyT [11] BBeAU IOHSITVIE HETTOABVKHO TOUKM TPEThEro MopsiAKa 1 celi-
Jac ye eCTb HECKOABKO MCCAeAOBAHNIM 5TOTO 06beKTa B YaCTUIHO YIIOPSAOUEHHBIX METPUUECKIX
MPOCTPAHCTBAX M KOHYCOMAAABHBIX METPUUECKIX POCTPAHCTBAX.

B sT0I% cTaThe OnpeAeAeHO NOHSATHE CTOMKOCTY UTePALMIOHHOM MPOLeAypbl HEITOABVDKHOM TOY-
KM TPeThero IMOPsIAKA U TIOAYUEHbI YCAOBMSI CTOMKOCTM AASI CMEIITaHHBIX MOHOTOHHBIX OTObpaxe-
HIMI, KOTOPbIe YAOBAETBOPSIOT pa3Hble YCAOBUS CXATHsL. DTU pe3yAbTaThl PACIIUPSIIOT U AOTIOAHSI-
IOT HEKOTOPbIE M3BECTHbIE Pe3yAbTaThl. TakKe IIPMBEAEH MAAOCTPATUBHBIN IpUMep.

Kntouesvie cnosa u d]pllfibl.‘ HENIOABIVIKHasI TOUYKa TPeThEero IOpsIAKa, CTOﬁKOCTb, CMelIaHHbIN MO-
HOTOHHBIN orneparTop, yCAOBMSI CKaTHsI.



