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PROBLEM WITH TWO-POINT CONDITIONS FOR PARABOLIC EQUATION OF
SECOND ORDER ON TIME

The correctness of the problem with two-point conditions on time variable and Dirichlet-type
conditions on spatial coordinates for the linear parabolic equations are established. The metric
theorem about estimate from below of small denominators of the problem is proved.
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INTRODUCTION

The problems with two-point and multipoint conditions with respect to the time vari-
able for partial differential equations were studied in many scientific papers (see, for exam-
ple [2-5,7-11] and the references there). In particular, the correctnes of multipoint problems for
evolution equations in unbounded domain was investigated in the works [4,5]. The solvability
of multipoint problems for partial differential equations in bounded domains is frequenly re-
lated to the problem of small denominators. In the scientific works [3,7,8,11] metric approach
have used for estimate from below of small denominators and it was proved that the conditions
of solvability of such problems are satisfied for almost all (with respect to the Lebesgue mea-
sure) vectors which coordinates are the coefficients of the equations and interpolation nodes
values.

The results of scientific works [3,7, 8, 11] were generalized in the papers [2,9,10]. The
correctness of problems with multipoint conditions holds for almost all (with respect to the
Lebesgue measure) vectors which components are the interpolation nodes values (see [9, 10]).
The conditions of solvability of the problem with two multiple nodes for factorized equation
for almost all (with respect to the Lebesgue measure) vectors constructed by the coefficients of
the equations (see [2]).

In the present work, we established the conditions of correct solvability of local two-point
problem for factorized, parabolic operator (by Petrovskyi sense) in cylindrical domain which
is a cartesian product of time segment and special multidimentional parallelepiped and we
prove that such conditions are true for almost all (with respect to the Hausdorff measure)
vectors constructed by coefficients of the equation.
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1 STATEMENT OF THE PROBLEM

In the domain Q} = (0, T) x IT?, IT? = (0, 7)¥, we consider the problem

2
[[ <at + Zaqu+Aq L1,...,LP)> u(t,x) =0, (t,x)€ QF, (1)
u(ty, x) = @1(x), u(ty,x) =¢2(x), 0<ty <tr <T, x=(x1,...,xp) €IIP, (2)
L}”u(t,x) = L}”u(t,x) =0, me{0,1,...,b—1}, je{1,...,p}, (3)
xj:O Xj=7r

where a7 >0,je{l,...,p},q€{1,2},

Ag(Ly,...,.Ly) =Y AlLy...L), AleC, ge{1,2}, bEN,

|s|<b

L:= -2 <p]-( )3 ]> +qi(xj); p;j € C*710, 7], q; € C**72[0, 71] are real-valued functions,
pj(x )>P0]>0 9j(xj) 2 0,j € {1,..., p}-

We denote via Aj ={Ax, kj € N} and {ij(x]-),k- € N}, j € {1,...,p}, the set of eigen-
values and the system of responsible eigenfunctions (we suppose that fon ]ij (xj)[?dxj = 1) of

such problem
L;iX(xj) = AX(x;), X(0)= X(mr)=0. (4)

It is known [6] that for each j, j € {1,..., p}, the eigenfunctions of the problem (4) make the
total orthonormal system in the space L, (0, 7). Under the set of conditions for p;(x;) and q;(x;)
the next estimates

Cik} < Ay, < Cok3, (5)

max )X,E:)(x]-)<Nkr re{01,...,20}, kKeN, je{l,...p}

ngjgn vk
are true for all kj € N, where Cq, C3, Ny, ..., Nj are positive constants; in addition to that the
system of functions
{Xi(x) = X, (x1) .. X, (xp), k = (1, ..., kp) € NP}
is a total orthonormal system in the space L, (IT7).
Denote A = {Ax = (A, -, Ax,) k € NP}, AR = A7 +...+Abp,b €EN,B=(B1,...,Bp) €
R?, (E,X]IZ) = ﬁl)\zl +...+ ﬁp)\zp; El ,a € R, B € RV isa space of functions ¢(x) =

ap
Y- 9k Xk (x), pr € C, k € NP, with finite norm

c" ([0, T];EZ 3) is space of functions u(t,x) = Y ur(t)Xy(x), ux(t) € C"[0,T], k € IN?, with
norm

Y |pkl2wi(a; Bb),  wi(a; B;b) = |AL|* exp (B, AL);
keIN?

PE, ;s

< 00,

u; C" ([0, T];Ezﬁ)

b
Z(:)tren(e)\)T( Hafu /8t] E

wp
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2 UNIQUENESS OF A SOLUTION OF THE PROBLEM
The solution of the problem (1)—(3) in the space C2 <[O, Tl; Ez, B> has the form of series
u(t,x) = Y we(H)Xp(x). (6)

kNP
The coefficient uy(t),k € IN?, is a solution of the two-point problem for ordinary differential
equation

d p
I1 (E + Y alAl + A,,(Akl,...,;\kp)> ug(t) =0, @)

ur(t) = o1, uk(t2) = oo, (8)
where @1y, ¢or, k € IN? are the Fourier coefficients (according to the system Xy (x), k € IN?) of
functions ¢;(x), ¢2(x) respectively. Let £ by a set {k € N7 : u1(Ax) = pa(Ax)}, where

. p
ma(Ap) = — ZajA,fgj —Ag(Aky-oA,), g€{1,2}, keN”. 9)
j=1

The solution of the problem (7), (8) is defined by the formulas

we(t) = D1 (Ag)e Wt + Dy(Rp)er2 (0t if k€ NP\ L,
¢ D3 (A)et 1t 4 Dy (R )te 0!, if k € L,

where D; (Xk), j€{1,...,4},1is a solution of the following system of linear equations

Dy (Xk)eyl():‘k)tl + Dz(xk)eVZ():\k)tl = ¢ixs P \ .
Dy (Ag)et1 (W2 4 Dy (R )et2(M)t2 = gy, /
D3(7\k)e?‘1 (/:\k)fl + D4(7\k)tleﬂl(/:\k) L= gy, frer
D3(7\k)gﬂl()\k)tz + D4(7\k>t2€yl()\k)t2 = oo

Let’s denote
AGLY — et (A b+pa(Ah {g(ﬂZ(Xk)_Vl(Xk))(tZ_tl) — 1] , ifk€ NP\ L,
() = { (b — t)et1 () (trt2), ifke L.
Theorem 1. In order that problem (1)-3) have at most one solution in the space

C? ([0, T); Ez 3>' n €R, E € IR?, it is necessary and sufficiently that the following condition be
satisfied ,

(10)

VkENP\L VELEZ (ua(Ak) —m(Ax))(t2 — 1) # 2il. (11)
Proof. The proof is carried out by the scheme used to prove theorem 5.3 in [7]. O

We get next result comes from Theorem 1 and formulas (9).
Corollary 1. In order that problem (1)-3) have the most one solution in the space
C? <[O, Tl; EZ B), x € R, B € IR?, it is necessary and sulfficient that for each (ky, ..., k;) € NP\ L

and each { € Z at least one of the equations

3 27l
Z(a} - a]Z)AZ + ) Re(Al — A?))\ill . ..)\i” =0, ) Im(A! — Ag))‘ill . ")‘ip =
]:1 ! |S‘<b p ‘S|<b p ( 2 1)

doesn’t hold.
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Example 1. For the problem

9 & ?\[(a &* & )
<§ + ﬂy + lﬂl@) <g + ﬂy + Zl/'lz@) u(t, X) = 0, (t, X) € QT’ (12)
u(0,x) =0, u(T,x)=0, x¢€(0,mn), (13)
?"Mu(t, x) 02" u(t, x)
ox2m x=0  ox2m =1 0, me {0,1}, (14)

wherea > 0, aj,a; € R, ay # ap, i = —1, the determinant A()\y), k € N, is calculated by the

formula
e(—ak4+ia1k2)T(ei(az—al)sz —1), ifk#0,

A(Ay) =
() {r ifk=0.

So far as |A(A)| = 2~ T|sin(ay — a1)k*T/2|, k # 0, then the problem (12)—14) has in
space C? <[O, T); Ez B> only trivial solution, if number (a, — aq)T/m is irrational. If number
(ay — a1)T/ 7 is rational, then the problem (12)—(14) has in space C? <[O, T];EZ 3) countable

number of linear independent solutions

ur(t, x) — 6716ar4n4t <e4iﬂ172n2t . e4iazr2n2t> SiIl(ZTﬂX), re? \ {O}

3 EXISTENCE OF A SOLUTION OF THE PROBLEM

In what follows, we consider that the condition (11) is satisfied. Then for every k € IN”
there exists the unique solution u(t) of the problem (7), (8) such that

1 - - - -
—— | (er2 M2t (M)t _ (At (Aty
A(Ax) [
up(t) = + (eﬂl(};k)tlJFVZ(Xk)t — eI/’Z(Xk)t1+V2(7\k)t)q)2k] , ifke NP\ L, (15)
1 - -
—— | (tr — t)e}ll()\k)(fﬁf)golk + (t— tl)eﬂl()‘k)(tl'i‘t)q)Zk . ifke L.
AMQ[ ]

We get from equations (6), (15) that the solution of the problem (1)—(3) can be represented by
the Fourier series
u(t,x) = ) ue(HXe(x) + ), w(H) X (). (16)
kel keINP\L
The series (16) is, generally speaking, divergent, since the nonzero quantity A(A;) can take
very small for the infinite number of vectors A; € A. The following statement is true.

Theorem 2. Suppose that condition (11) is satistied and there exist w € R and V € R? such
that for all (except a finite number) vectors Ay € A the following inequality holds

|A(Rk)| > wi(—w; —=7;b). (17)

% where g = a+ w + 2, EO = E—{—f/’—gtl,g = (51,...,5p),0 < (5]- <
0

min{a},a]z}, j € {1,...,p}, then there exists the unique solution of the problem (1)~3) from

b
If Q1,92 € Etxo,

the space C> <[O, T); Ez 3)' which depends continuously on the functions ¢1, ¢>.
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Proof. It follows from equations (9) that estimates
—(§,A}) < Repg(X) < —(5,A), q€{1,2}, (18)

where (’f = (G1,---/Cp), Gj > max{a}, a]z},]' € {1,...,p}, are true for all (except a finite number)
vectors k € INP. So far as

(A < GslA7l, q€{1,2}, C3>max{aj,a}:je{1,...,p}}, (19)
then we’ll get from estimates (18), (19) that
VE> 0 |(HetWHO| < Cup(r; —3tb), j € {0,1}, g € {1,2}, r € {0,1,2}.  (20)

Based on estimates (17), (20) we get from the formulas (10), (15) that

2
max )u](()( )‘ <G5y, ]q)qk\wk(Z—i—w;ﬁ—th;b), k € INP.

tE[O T] g=1
So
2 1/2
u; C2 [0, T]; Eb < max \u ()lzwz(a;ﬁ;b)>
) ( ‘ r:Zo WSoeor £
2 . . 1/2
< Cs Z( Y \qukrzwi(«x+w+2;/3+17—5t1;b>> (21)

=1 \kelN?
2
; H(Pq/ ao,Bo

The proof of the theorem implies from the inequality (21). O

Remark 1. If the conditions of Theorem 2 are satisfied then for each fixed ty € [0, T| the func-

; b
tion u(to, x) belongs to the space E] w By

The next statement describes the equations (1), for which estimate (17) is true with properly
chosen indices w € Rand 7 = (vy,...,vp) € RP.
Theorem 3. Suppose that for eachj € {1,...,p} the following inequality holds
1 2
a; > aj. (22)

Ifw=01V-= E(tl +t2) +1j(t1 — t2), whereij = (11,...,1p), 0 < 1; < a]l — ajz,j e{1,...,p},
then the estimate (17) holds for all (except for a finite number) vectors Xk e A.
Proof. We get from inequalities (22) that for all (except for a finite number) vectors Ak € A the
inequality

Re (1) — (X)) > (7,AD) (23)

is true. It follows from the estimates (23) that the set L is not over finite. Let

AL L #£ o,
v { il e

0, iftL =0.



356 SYMOTYUK M.M., TYMK1V I.R.

Then, for all k € IN? such that |7t,1(| > N, the determinant of A(Ay) is calculated by the formula

A(Ag) = ot A+ (At <e(ﬂz(;\k)*ﬂ1(;\k))(t2*tl) _ 1) _ (24)
Since for any z € C such that Rez > { > 0, the inequality |¢* — 1| > ¢ — 1 is true, then based
on estimates (23) we obtain from equation (24) that

IA(Rp)| > eRelm Ut (ih) (A (=) _ 1

7

for |7t,1<| > N. Considering that ¢¢ — 1 > 1e¢ for all { > 1, and the fact that for all (except for a
finite number) the inequalities (18) are satisfied, we obtain that the inequality

IA(Ag)| > e Eltitt) Hi(ti—t2),47)

holds for all (except for a finite number of) vectors K € INF. Theorem is proved. O

4 METRIC ESTIMATES OF SMALL DENOMINATORS

Let’s study the question of possibility for inequality (17). Let us provide some concepts
related to p-Hausdorff measure and Hausdorff dimension of the set M C IR?, for the ease of
presentation.

Definition 1. A limit (finite or infinite)

dim, M = liminf ) (diam S]-)p,
6—0 =1

where the infimum is taken over all coverings of the set M by the balls S ir j=1,2,..., such that
McC US; and diameter of each ball S j is not greater than ¢, diam S j <9, is called p-Hausdorff
j=1
measure of the set M C RP (this limit we denote by dim, M).
Definition 2. A real number 8 such that
1)V B<p<p dimyM =0,
2)Vp 0<p < BdimyM = oo,
is called the Hausdorff dimension of the set M C RP.

We will use statements, proof of which is contained in [1].

Theorem 4. The set M C R” has zero p-Hausdorff measure if and only if when there exists a
covering by balls {S;}7* | of the set M such that }, (diamS;)? < oo, and that every point of the
=1

]
set M belongs to an infinite number of balls S;.

We denote s;, = (0,...,0,4,0,...,0),j € {1,...,p}, g € {1,...,b— 1}, the multiindex of
W

J
the length p which j-th place is g and the rest places are zero;
y7 = Im(Agjlq — Agm), ge{l,...,b—1},je€{1,...,p},

7=y qe{l... b1}
G =[c1,d1] x ... X [cp,dpl, cj,d; €R, c; < dj,jE{L,..., p}
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Theorem 5. Letp € (p—1;p] and g € {1,...,b— 1}. The inequality (17) holds for almost
all (respectively p-Hausdorff measure) vectors i € G and for all (except for a finite number)
vectors k € NP if w > wi(q), V = §(t + t2), where & = (G1,...,8p), & > max{a]l-,a]z},
je{l,...,p},

p/(2b) +1-1/b ¢

wi(q) = PR T ge{l,...,b—1}.

Proof. Fixg € {1,...,b—1}. Let

(1) = Y Im(Al - A%, ZW

|s|<b

Let’s denote by V¢ (A, m) a set of vectors if7 € G for which the inequality

p o -
Zy?TAZj+Fq(Ak)r—m <Abmv, r=(ta—t)/m,
j=1

is true for a fixed Ay € A and m € Z and by V the set of vectors i/ € G, which belong to an
infinite number of sets V.’ (A, m), Ax € A, m € Z. Obviously there exists the number C; =
C7(p,b,c1,...,cpd1,...,dy) > 0such that forall m € Z, |m| > cyji,i—l\, the set V“’(Xk,m) is
empty.

We now consider the case when |m| < C7]7\]Iz’1\ = M(Ag). Let Ak, = T{nax {Ax;}, and
JE{l

V“’(Ak,m,yz,...,y?ofl,y?ﬁl,...,yZ) = {y?o eR:(v],...,y)) € V¥(Ar,m)}. If VY (A, m) #
@, then there exist ]/17, .. .,y?o_l,y?oﬂ, .. .,yZ such that V¥ (A, m, y‘i, .. .,y?o_l,y?oﬂ, .. .,yZ) is

- -1 - -
not empty interval <TMZ[“’)\Z ) . Then the set V¢ (Ay,m) can be covered by the balls S, (Ay, m),
[\
— — _1 —
r € {1,...,J(Ax)}, of the radius <TM,’§\“’)\Z ) , amount J(A;) of which does not exceed
[\

- -1
Cs <|AZ |“’Azj0) P Note that for w > w1 (q) the inclusion

(o) ](Xk)
“=N U U ©(Re,m m U U U SRAem) (25

K=0 |3, |>K og|m|gM(Xk) K=0 |X;|>K 0<|m|<M(Ay) r=1

is correct. Therefore, each point of the set V¢ belongs to an infinite number of the balls
S;(A,m), v € {1,...,J(A)}, 0 < |m| < M(A), Ay € A. On the basis of estimates (5) we
obtain from (25) that

) ) j%) <diam5r(7\k,m))p =2 )3 Z <T|)Lb|w)tq )p

KNP o<iml <M(A) =1 KENP 0<|m| <M (L) 7=1 (26)
! 1
Co <C .
keX]l:\IP |AL|(@btq)(p—p+1)=b+1 OkeX]I:\IP || 2((@b+a) (p—p+1)—b+1)
P/ 1170

For w > £ T 1 the series (26) is converges, then by Theorem 4 the p-Hausdorff
measure of the set V' is equal to zero. To complete the proof of the theorem it is given that

[AC)| = eferm i Rern@n lsin (Tm(ua(Ae) - (1)) (2 — 1))

, keNP\L, (27)
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and that

sin (Im(ea(1) — 1 (X)) (k2 — 1)) | 2 2 [Im(pa i) — () (12 — 1) — m

(28)
=2 Y Im(A] — AD)TA .. .AZ —m|,
|s|<b

where T = (t; — t1) /7 and an integer m is such that

~1/2< ) Im(A] = ADTAY LAY —m < 1/2.
|s|<b

Based on the estimates (18), (27) and (28) we get that for almost all (respectively to the
p-Hausdorff measure) vectors i € G the inequality

IA(A)] > ’Xllz’*(P/(Zb)+1*1/b)/(pfp+1)+q/bef(§(t1+t2) by

is true for all (except of a finite number) vectors Ax € A. Theorem is proved. 0

Let Hff ”7, w € R, V € RP, be a set of vectors ij7 € G, for which the estimate (17) is true.
From Theorem 5 the next corollary about the Hausdorff dimension of the set G\ Hy’ Y follows.

Corollary 2. Foreachq € {1,...,b— 1} and arbitrary w > £ +1— % the Hausdorff dimen-

- V. 2)41-1/b ., =
sion of the set G\H,"" is less than p — 1 + %, ifV = ¢(t + tp).

Remark 2. Theorem 5 complements the results of [11].

5 CONCLUSIONS

The theorems of existence and uniqueness of the solution of the problem (1)—(3) in the
space of exponential type are established. The lower bound estimates of small denominators
for almost all (respectively to p-Hausdorff measure) vectors i/ € G are established. A class
of problems with conditions (2), (3) for equations (1) for which there is no problem of small
denominators, is subscribed.

The results can be extended to the next problem

]_[ (at+2a”7Lb+A,, Ll,...,Lp)> u(t,x) =0,
(j, x)=¢j(x), ti=(G—-Dto, je{l,...,n}, to=T/(n—-1),

where a] >0, Ag(Ly,...,Ly) = ¥ ALY ... L), AleC qge{l,... n}.

|s|<b
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