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PASTUKHOVA 1.

ON CONTINUITY OF HOMOMORPHISMS BETWEEN TOPOLOGICAL CLIFFORD
SEMIGROUPS

Generalizing an old result of Bowman we prove that a homomorphism f : X — Y between
topological Clifford semigroups is continuous if

theband Ex = {x € X : xx = x} of X is a U-semilattice;
the topological Clifford semigroup Y is ditopological;

the restriction f|Ex is continuous;

for each subgroup H C X the restriction f|H is continuous.
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INTRODUCTION

This paper was motivated by the following old result of Yeager [6] who generalized an
earlier result of Bowman [3].

Theorem 1. A homomorphismh : X — Y between compact topological Clifford semigroups
is continuous if and only if for any subgroup H C X and any subsemilattice E C X the
restrictions h|H and h|E are continuous.

In this paper we shall extend this result of Yeager beyond the class of compact topolog-
ical Clifford semigroups. Let us define a homomorphism /1 : X — Y between topological
semigroups to be EH-continuous if

e the restriction /1|Ex to the set of idempotents of X is continuous;
e for every subgroup H C X the restriction &|H is continuous.

In terms of EH-continuity, Theorem 1 says that each EH-continuous homomorphism # :
X — Y between compact topological Clifford semigroups is continuous. For compact topo-
logical Clifford semigroup X with Lawson maximal semilattice Ex = {x € X : xx = x} this
result of Yeager was proved by Bowman [3] in 1971. Generalizing the Bowman'’s result, in The-
orem 3 we shall prove that each EH-continuous homomorphism # : X — Y from a topological
Clifford U-semigroup X to a ditopological Clifford semigroup Y is continuous. Topological U-
semigroups will be introduced and studied in Section 2. Section 1 presents some preliminaries.
Section 4 contains our main result and some its corollaries.
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1 PRELIMINARIES

1.1. Semigroups. A semigroup is a non-empty set endowed with an associative binary opera-
tion. A semigroup S is said to be

e inverse if for every x € S there is a unique element x~! € S such that x = xx~!x and
x~ =y laxl;
e Clifford if it is inverse and xx~! = x~!x for every x € S;

e g semilattice if it is commutative and every element x € S is an idempotent, that is xx = x.

For a semigroup S by Es = {¢ € S : ee = e} we denote the set of idempotents of S and for
each idempotent e € Eg let

Ho={xeS:qyeSxy=e=yx, xe=x=ex, ye=y = ey}

denote the maximal subgroup of S containing e. If the semigroup S is inverse, then the maximal
group H, can be writtenas H, = {x € S: xx ! = ¢ = x " !x}.

Each semilattice E carries the natural partial order < defined by x <y iff xy = yx = x. For
apointx € EletJx ={y € E:y < x}and tx = {y € E : x < y} be the lower and upper cones
of x, respectively. By ftx we shall denote the interior of the upper cone Tx in E.

A homomorphism between semigroups X, Y is a function h : X — Y preserving the oper-
ation in the sense that h(x - y) = h(x) - h(y) for all x,y € X. The uniqueness of the inverse
element in an inverse semigroup implies that each homomorphism i : X — Y between in-
verse semigroups preserves the inversion in the sense that #(x~!) = h(x)~! for all x € X.
More information on inverse semigroups can be found in [5].

A topological semigroup is a semigroup S endowed with a topology making the semigroup
operation - : S X S — S continuous. A topological inverse (Clifford) semigroup is an inverse
(Clifford) semigroup S endowed with a topology making the multiplication-: S x S — S and
the inversion ( )~!: S — S continuous.

A topological semilattice E is Lawson if open subsemilattices form a base of the topology

of E.
1.2. Unosemigroups and unomorphisms. By a left unit operation on a semigroup S we under-
stand a unary operation Ag : S — S such that Ag(x) - x = x forall x € S. A left unosemigroup
is a semigroup S endowed with a left unit operation Ag : S — S. A left unosemigroup S is
called A-regular if for each x € S thereis x* € S such that Ag(x) = xx*. In this case the element
As(x) = xx* is an idempotent because Ag(x) - Ag(x) = Ag(x)xx™ = xx* = Ag(x). So, for each
A-regular left unosemigroup S we get As(S) C Es.

By an unomorphism between left unosemigroups (X,Ax) and (Y, Ay) we understand a
semigroup homomorphism /1 : X — Y preserving the left unit operation in the sense that
ho )\X = )\y oh.

Left unosemigroups were introduced in [1]. By analogy we can define right unosemi-
groups, see [1].

Each inverse semigroup S endowed with the left unit operation Ag : S — S, Ag : x 5 xx 1,
carries a canonical structure of a A-regular left unosemigroup. If S is Clifford, then the left unit
operation Ag is a homomorphism coinciding with the projection 77 : S — Eg, 7 : x + xx ! =
x~1x. If S is a semilattice, then As coincides with the identity map of S.
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The uniqueness of the inverse element in an inverse semigroup implies that each homo-
morphism between inverse semigroups is a unomorphism of the corresponding left unosemi-
groups.

By a topological left unosemigroup we understand a topological semigroup S endowed with
a continuous left unit operation Ag : S — S.

Proposition 1. If a topological left unosemigroup (S, Ag) is A-regular, then for any idempotent
e € S and any point x € S withe- Ag(x) = e the right shiftsy : H, — HeX, sy : z — zX, is a
homeomorphism.

Proof. Since (S, Ag) is A-regular, Ag(x) = xx* for some element x* € S. Consider the right shift
Sy 1 S — S, sy 1 z — zx*, and observe that for every element z of the maximal subgroup

H,, we get syx 05x(z) = zxx* = z-Ag(x) = ze-Ag(x) = ze = z. This implies that the
restriction sy«|H,x : Hex — H, is a continuous map, inverse to sy. So, sy : H. — H,xis a
homeomorphism. O

1.3. Ditopological unosemigroups. For two subsets A, B of a semigroup S consider the subsets
BXA={yeS:FbeBdacAby=a} and ALB={xe€S:J3ac AJbe B a=xb}

which can be thought as the results of left and right division of A by B in the semigroup S.

A topological left unosemigroup (S, As) is called a ditopological left unosemigroup if for each
x € X and neighborhood Oy C S there are neighborhoods W) (,) C As(S) and Uy C S of the
points Ag(x) and x, respectively, such that

(W)\s(x) PN Ux) N )\gl(wAs(x)) C Oy.

Ditopological left unosemigroups were introduced and studied in [1]. By analogy, ditopo-
logical right unosemigroups can be introduced; see [1]. By Theorem 4 of [1], each compact
topological left unosemigroup is ditopological.

A topological Clifford semigroup S is ditopological if it is ditopological as a topological
left unosemigroup (endowed with the canonical left unit operation As : x +— xx~!). By
[1], the class of ditopological Clifford semigroups contains all compact topological Clifford
semigroups, all topological groups, all topological semilattices and is closed under many op-
erations over topological Clifford semigroups (in particular, taking Clifford subsemigroups,
Tychonoff products, reduced products, semidirect products).

2 TOPOLOGICAL LEFT U-UNOSEMIGROUPS

In this section we introduce the notion of a left U-unosemigroup, which is crucial in the
proof of our main results.

Definition 1. A topological left unosemigroup (X, Ax) is called a left U-unosemigroup if for
each point x € X and each neighborhood O, ,(,) C X of the element Ax(x) there is an open
neighborhood U, C X of x and an idempotente € O, () such thateAx(x) = e and eUy C Hex.

In case S is a topological semilattice the notion of a left U-unosemigroup agrees with the
notion of a U-semilattice.
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A topological semilattice S is called a U-semilattice if for each point x € S and its neighbor-
hood U C S there is an idempotent y € U such that x € {}y. We recall that by {}y we denote
the interior of the upper cone 1y in S.

The definitions of a left U-unosemigroup and a U-semilattice imply the following charac-
terization:

Proposition 2. A topological semilattice E is a left U-unosemigroup if and only if it is a
U-semilattice.

The interplay between topological U-semilattices and other classes of topological semi-
lattices was studied in [2]. In particular, let us recall for future references that each locally
compact Lawson semilattice is a U-semilattice. The same is true for locally compact zero-
dimensional semilattices, as they are Lawson. Let us recall that a regular topological space X
is locally compact if every point has a compact neighborhood and zero-dimensional if closed-and-
open sets form a base of the topology of X.

2.1. Topological Clifford U-semigroups. Topological Clifford semigroups which are left U-
unosemigroups can be characterized as follows.

Proposition 3. A topological Clifford semigroup S is a left U-unosemigroup if and only if its
band Es = {x € S : xx = x} is a U-semilattice.

Proof. Assume first that S is a left U-unosemigroup. Given any idempotent e € Eg and its
neighborhood U C Eg, we need to find an idempotent ¢/ € U such that e € ft¢/. The set U
is open in Eg and so U = W N Eg for some open neighborhood W C S of e. Since S is a U-
unosemigroup, for the element e and the neighborhood W of the point ee~! = e we can find an
open neighborhood W, C S of e and an idempotent ¢’ € W such that ¢’e = ¢’ and ¢'W, C H,e.
Without loss of generality we can assume that W, C W and therefore U, = W, N Es is an open
neighborhood of e in Eg.

It remains to check that e € fi¢’. For this observe that the inclusion ¢'W, C H,e implies that
¢'U, C (Hye) NEs = {¢'}e = ¢’ and consequently ¢ € U, C f¢’. Thus e € {¢/, which means
that Eg is a U-semilattice.

Now assume that the maximal semilattice Eg of S is a U-semilattice. To show that S is a
topological left U-unosemigroup, take any point x € S and neighborhood O,,-1 C S of the
idempotent 7r(x) = xx~!. Since Es is a U-semilattice, we can find an idempotent ¢ € O
such that xx~1 € fe. Then U, = 71~ !(fre) is an open neighborhood of x.

xx—1

It remains to show that ell, C H,x. First observe that for any element z € H, we have
z = ze = zex 'x. It follows from

1 1 1

(zex 1) (zex D)7l = zex lxez ! = zez 7l =
that zex~! € H, and z = (zex !)x € H,x. Hence, H, C H,x.

Finally, the inclusion 7t(elly) = 7(e)m(Uy) C {e}fre = {e} implies that ell, C 7 !(e) =
H, C H,x, which is the desired conclusion. O
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Having in mind the previous proposition we define a topological Clifford semigroup S
to be a topological Clifford U-semigroup if its maximal semilattice Eg is a U-semilattice. This
happens if and only if S is a topological left U-unosemigroup.

3 THE CONTINUITY OF EH-CONTINUOUS UNOMORPHISMS BETWEEN TOPOLOGICAL LEFT
UNOSEMIGROUPS

The following theorem is a key ingredient in the proof of Theorem 3, which is our main
result. This theorem can be considered as a generalization of Bowman’s result [3] to topological
left unosemigroups.

Theorem 2. Any EH-continuous unomorphism h : X — Y from a A-regular topological left
U-unosemigroup (X, Ax) into a ditopological left unosemigroup (Y, Ay) is continuous.

Proof. Given any point x € X and an open neighborhood O, C Y of the point y = h(x) we
need to find a neighborhood Vy C X of x such that k(Vy) C O,.

Since the left unosemigroup (Y, Ay) is ditopological, there are open neighborhoods
Wi, ) C Av(Y) and Uy, C Y of the elements Ay(y) and y, respectively, such that
(Way ) ™ Uy) N Ay 1(W/\y(y)) C Oy. Taking into account that Ay(y) -y € U, we can replace
W), (y) by a smaller neighborhood and additionally assume that W,y -y C Uy.

Since the unomorphism / preserves the left unit operation, we have h(Ax(x)) = Ay(y). The
A-regularity of the left unit operation Ax implies that Ax(X) C Ex. By the continuity of the
restriction h|Ax(X), there is an open neighborhood W, () C Ax(X) such that h(W, (,)) C
WM(}/)'

Since X is a left U-unosemigroup, for the point x and the neighborhood W) (,) of Ax(x)
we can find an idempotent e € W, (,) and an open neighborhood Vy C X of x such that
eAx(x) = e and eVy C Hex. Replacing Vi by a smaller neighborhood, if necessary, we can
additionally assume that Ax(Vx) C W, (). In this case

Ay oh(Vy) =hoAx(Vy) C h(w/\x(x)) - WAy(y)

and h(ex) = h(e) - h(x) € h(W)(x)) ¥ C Wi, y) -y C Uy.

We claim that the restriction h|H,x is continuous. Indeed, by the A-regularity of the left
unit operation Ay, there is an element x* € X such that Ax(x) = xx*. By Proposition 1 the
right shift sy : H, — H,x, sy : z +— zx, is a homeomorphism with inverse s,+ : H.x — H,,
sy + z — zx*. The EH-continuity of & guarantees that the restriction &|H, is continuous and
so is the composition h o sy« : H,x — Y. For every point z € H,x we can find an element
g € H, with z = gx and observe that zx*x = gxx*x = gAx(x)x = gx = z. So, h(z) =
h(zx*x) = h(zx*) - h(x) = h(zx*) - y, which implies that the restriction h|H,x is continuous
as the composition of the continuous map & o s,+ and the continuous right shifts, : Y — Y,
Sy iU > uy.

By the continuity of the map h|H,x, the set 1~ 1(U,) N Hx is an open neighborhood of the
point ex. Replacing the neighborhood V by a smaller one, if necessary, we can assume that
eVx C h™1(Uy) N Hex. Then h(eVy) C h(h~1(Uy)) C U,

To finish the proof of the continuity of  at x, it remains to check that #(Vy) C Oy. For this
observe that for every v € Vy we get hi(e) - h(v) = h(ev) € Uy and h(e) € h(W)(r)) C Wy, (y)-
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Combined with the inclusion Ay o h(v) € Ay o h(Vx) C W, () proved above, this yields
h(U) € (W)\y(]/) PN Uy) N A;l(WM(y)) C Oy

according to the choice of the neighborhoods W, (,) and Uy, O

4 THE CONTINUITY OF EH-CONTINUOUS HOMOMORPHISMS BETWEEN CLIFFORD
U-SEMIGROUPS

Now we are in a position to prove the main result of the paper and state some its corollaries.
Let us recall that a topological Clifford semigroup X is called topological Clifford U-semigroup
if its band Ey is a U-semilattice.

Theorem 3. Each EH-continuous homomorphism h : X — Y from a topological Clifford
U-semigroup X to a ditopological Clifford semigroup Y is continuous.

Proof. By Proposition 3, the topological Clifford U-semigroup X endowed with a canonical left
unit operation A : x — xx~! is a A-regular topological left U-unosemigroup. The homomor-
phism h, being a homomorphism between Clifford semigroups, preserves the operation of in-
version. It follows that /i preserves the canonical unit operation on X and so is a unomorphism.
Thus, h : X — Y is a EH-continuous unomorphism and by Theorem 2, it is continuous. O

Since each locally compact Lawson semilattice is a U-semilattice (see Proposition 2.4(3)
of [2]), this Theorem implies

Corollary 1. For any topological Clifford semigroup X with locally compact Lawson maximal
semilattice Ex, every EH-continuous homomorphism h : X — Y to a ditopological Clitford
semigroup Y is continuous.

Since each locally compact zero-dimensional semilattice is Lawson (see Theorem 2.6 in [4]),
we obtain

Corollary 2. For any topological Clifford semigroup X with locally compact zero-dimensio-
nal maximal semilattice Ex, every EH-continuous homomorphismh : X — Y to a ditopologi-
cal Clifford semigroup Y is continuous.

Since each compact Hausdorff topological Clifford semigroup is ditopological (see Theo-
rem 4 in [1]), Corollary 1 implies the following result of Bowman [3].

Corollary 3 (Bowman). Each EH-continuous homomorphism h : X — Y from a compact
Hausdortf topological Clifford semigroup X with Lawson maximal semilattice X into a com-
pact Hausdorff topological Clitford semigroup Y is continuous.
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IMactyxosa I. ITpo HenepepsHiciio 20moMOphi3mie Midi monosoiuHuMU KaighopOosumu Hanisepynamu
// Kapmarceki MmaTem. myba. — 2014. — T.6, Nel. — C. 123-129.

Y3araabHIOETBCSI Pe3yAbTAT, OTPUMaHMIL y cTaTTi [3], i AOBOAMTHCSI HeTlepepBHiCTh roMoMOpdi-
3My f : X — Y miX TomoAorivHMMM KAipOpAOBMMY HaTIiBIPyIIaAMI 38 YMOB:

MHOoXxmHa Ex = {x € X : xx = x} C X iaeMmoTeHTiB € U-HamiBrpaTkoo;
TomoAoOriuHa KAaidpopaoBa HamiBrpyma Y AiTomoaorivuHa;

3By>KeHHsI f|Ex HellepepBHe;

3By>keHHs! f|H HellepepBHe AAST KOXHOI miarpymm H C X.

Kntouosi crosa i ppasu: AiTomoAoriuHa yHOHaIiBrpyma, KAidpopaosa HamiBrpyma, TOMOAOTiUHA
HarmiBrparxa.

IMactyxoBa . O HenpepbigHoCHU 20 MOMOPGUIMO8 MEHCOY HONOL02UUECKUMU KAUPGPOPO08bIMI NOILY-
epynnamu // KapnaTtckme MateM. my6a. — 2014. — T.6, Nel. — C. 123-129.

Obob111aeTcst pe3yAbTaT, IOAYY€EHHBIN B paboTe [3], 1 A0Ka3bIBaeTCsI HEIPEePbIBHOCTb TOMOMOP-
dmsma f : X — Y MeXAY TOTOAOTMIECKMMI KA OPAOBBIMIA TOAYTPYIIIAMI IPU YCAOBVSIX:

MHOXecTBO Ex = {x € X : xx = x} C X nAeMIIOTEHTOB SIBAsIETCST L-IIOAY peIeTKois;
TOMOAOTYeCKasT KAMGOpAOBa HOAYTPYIIIA Y AMTOIIOAOTIMIECKAS];

cyxetne f|Ex HeIpepsIBHO;

cyxetne f|H HeIpepbIBHO AASI KaXXAO0M HOArpymmst H C X.

Krtouesvie cn06a u ¢ppasvl: AMTOMIOAOTMYECKAS YHOIIOAYTPYINIA, KAMGPOPAOBaA HOAYTPYIIIIA, TO-
IIOAOTHMYECKasl IOAYPeIIeTKa.



