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We describe an asymptotic behavior of entire functions of improved regular growth with zeros

on a finite system of rays in the metric of L?[0, 271].
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1 INTRODUCTION AND MAIN RESULT

The asymptotic behavior of entire and meromorphic functions of positive order of com-
pletely regular growth (for details, see [2, 3, 5, 11]) in the metric of L?[0, 27t] was described in
[6, 11, 12, 13]. Similar results for entire functions of zero order whose zero-counting functions
are slowly increasing were obtained in [1]. In particular, from [11, Theorem 7.2, p. 78] it follows
the following statement.

Theorem A. If an entire function f of order p € (0, +o0) with the indicator h(0, f) is of com-
pletely regular growth, then for any p € [1, +0o0)
PP
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Conversely, if for some entire function f, f(0) = 1, there exist p € [1,+c0) and I € LP[0,271]

such that
1 27 p 1/p
lim { — / Y=o,
r—+oo | 271 Jo

then f is of completely regular growth and h(0) = (6, f) for almost all § € [0,271].

log f(re)| 7
=B —h()

The aim of the present paper is obtain an analog of Theorem A for entire functions of
improved regular growth with zeros on a finite system of rays (see [4, 7, 8, 9, 10, 14]).

An entire function f is called a function of improved regular growth (see [7, 8, 9, 10, 14]) if
for some p € (0,+c0) and p; € (0,p), and a 27r-periodic p-trigonometrically convex function
h(p) # —oo there exists the set U C C contained in the union of disks with finite sum of radii
and such that log |f(z)| = |z|°h(@) + o(|z|), U % z = re'? — co.

If an entire function f is a function of improved regular growth, then it has the order p and
indicator h [14]. Our main result is the following theorem.
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Theorem 1. An entire function f of order p € (0,+o0) with zeros on a finite system of rays
{z rargz = 1/Jj},j e{l,....m},0 <1 < P < ... < Py < 27, is a function of improved
regular growth if and only if for some p, € (0,p) and any p € [1,+0c0), one has

1 21 |1 ip p 1/p
{EEﬂA lﬁiﬁ%ﬁi_nu_h(¢) d@} = o(rP2P), 1 — +oo. )

2 PRELIMINARIES

Let f be an entire function with f(0) = 1, let (A,),en be the sequence of its zeros, let p
be the smallest integer for which Y5> [A,| 7P~ < +oo, let Q, be the coefficient of zf in the
exponential factor in the Hadamard-Borel representation [5, p. 38] of an entire function of finite
order, and let cx(r,log | f|) be the Fourier coefficients of log |f|, i.e.

2w .
cx(r,log|f]) = %/0 e log|f(re'?)|dp, keZ, r>0.

Further, let f be an entire function of order p € (0, +00) with zeros on a finite system of rays
{zrargz=19;},je€{l,...,m},0 < ¢ < < ... < Py < 27 Furthermore, if p is noninteger
and f is a function of improved regular growth, then an indicator / of f has the form ([8, 10, 14])

where () is a 27r-periodic function such that on [¢;, ; + 277)

TTA;

_ — / — 1 — .
hj() sin 71p cosp(¢ —pj — ), Aj € [0,+00).

In the case p € IN, the indicator / is defined by the formula ([8, 9, 10])

m

T cos(pgp + 0f) + Z hi(e), p=op,
h(e) = j=1

Qpcospp, p=p—1,

where 07 € C, 7r = |67 /p + Qpl, 0f = arg(d¢/p + Q) and h;(¢) is a 27-periodic function such
that on [y, ¢; + 271) we have

A.
hi(p) = Aj(m — @ + ;) sinp(p — ;) — ?] cos p(g — ).

Lemma 1 ([8]). If an entire function f of order p € (0,+o0) with zeros on a finite system of
rays {z s argz = ¢}, j € {1,...,m},0 < @1 < ¢p < ... < Py < 27, is of improved regular
growth, then for some p3 € (0,p)

o(rf3)
K+1

cx(r,1og|f|) = cxr® + r — oo, (2)

holds uniformly ink € Z, where

1 27 ik Y i —iky;
i 5 fy ¢ hlp)dg = 7 M, Aj € [0, +00),
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for a noninteger p, and

m .
LY e M, K £p=p,
17
Cr = 2 _QJ_ZZ;AJe I, k=p=mp
=P — =
(5 k=p=p+1,

if p is an integer.

Remark that, using Lemma 1 and the Riesz-Fischer theorem [11, p. 5], we get that there ex-
ists an indicator i € L2[0,27] defined by the equality h(¢) := ¥ cre’*? (see [11, Definition 7.2,
kez

p-77]).

3 PROOF OF THEOREM 1

Necessity. If an entire function f of order p € (0, +c0) with zeros on a finite system of rays
{z:argz = 1/1]-},]' e{l,....m}0< ¢y <y <...<ty <2m,is of improved regular growth,
then by (2), we have

c(r/log |f])

pry ke, (3)

IS

for some constant C > 0 and all r > 0. In view of this, the sequence (r Pci(r,log |f|) — ck)kez
belongs to the space [, for all § > 1 and r > 0. Moreover, applying the Hausdorff-Young
theorem [11, p. 5], forp > 2, p~1 + 471 = 1, we get
g) 11
k .

£ o e

kez
According to (3), the last series is uniformly convergent with respect to ». Therefore, using
Lemma 1, we obtain (1) for p > 2. From this and Holder’s inequality it follows that (1) holds
forl1 <p <2
Sufficiency. Let (1) holds. Then for some p, € (0,p) and each k € Z

log|f(re'?)|

i —h(e) M

—C
144
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log | (rei?)|
L —h(e)

ck(r,log|f|) _Ck' < 1 /Zn
0

P — 2
27
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Hence, for some p; € (0, p) and each k € Z we get ci(r,log |f|) = cxrf 4+ 0(r2), ¥ — +o0. Then
by [10, Theorem 1, p. 1718] an entire function f is a function of improved regular growth. This
concludes the proof of the theorem.
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dq)} =o(r27P), r— oo
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OmcaBo acMMIOTOTMYHY IOBEAIHKY LIAMX (PYHKIIJ MOKPAIIeHOTO PEeryAspHOrO 3pOCTaHHS 3
HYASIMM Ha CKiHUeHHi cucTeMi pomeHis B L? [0, 27t]-MeTpuii.
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Omcano acMMITOTHMYECKOe TIOBeAeHNEe EeAbIX (DYHKLMI YAYUILIEHHOTO PEryAspHOrO pocTa C
HYASIMJ Ha KOHEUHOI cricteMe Ayudeit B LP [0, 277]-meTpuxke.
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