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KACHANOVSKY N.A.

ON EXTENDED STOCHASTIC INTEGRALS WITH RESPECT TO LEVY PROCESSES

Let L be a Lévy process on [0, +o0). In particular cases, when L is a Wiener or Poisson pro-
cess, any square integrable random variable can be decomposed in a series of repeated stochastic
integrals from nonrandom functions with respect to L. This property of L, known as the chaotic
representation property (CRP), plays a very important role in the stochastic analysis. Unfortunately,
for a general Lévy process the CRP does not hold.

There are different generalizations of the CRP for Lévy processes. In particular, under the 1to’s
approach one decomposes a Lévy process L in the sum of a Gaussian process and a stochastic in-
tegral with respect to a Poisson random measure, and then uses the CRP for both terms in order
to obtain a generalized CRP for L. The Nualart-Schoutens’s approach consists in decomposition
of a square integrable random variable in a series of repeated stochastic integrals from nonrandom
functions with respect to so-called orthogonalized centered power jump processes, these processes
are constructed with using of a caddldg version of L. The Lytvynov’s approach is based on orthogo-
nalization of continuous polynomials in the space of square integrable random variables.

In this paper we construct the extended stochastic integral with respect to a Lévy process and
the Hida stochastic derivative in terms of the Lytvynov’s generalization of the CRP; establish some
properties of these operators; and, what is most important, show that the extended stochastic inte-
grals, constructed with use of the above-mentioned generalizations of the CRP, coincide.

Key words and phrases: Lévy process, chaotic representation property, extended stochastic inte-
gral, Hida stochastic derivative.
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INTRODUCTION

Let L = (Lt);e[o,+00) De a Lévy process, i.e., a random process on [0, +o0) with stationary
independent increments and such that Ly = 0 (see, e.g., [6, 26, 28] for detailed information
about Lévy processes). In particular cases, when L is a Wiener or Poisson process, any square
integrable random variable can be decomposed in a series of repeated stochastic integrals from
nonrandom functions with respect to L. This property of L is called the chaotic representation
property (CRP), see, e.g., [23] for more information. The CRP plays a very important role in
the stochastic analysis (in particular, it can be used in order to construct extended stochastic
integrals, see, e.g., [16, 33, 15]), but, unfortunately, for a general Lévy process this property
does not hold (e.g., [31]).

There are different generalizations of the CRP for Lévy processes. The first one was pro-
posed by K. Ito [14] (see also [7]) and consists in the following. By the Lévy—Khintchine formula
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a Lévy process L can be decomposed in the sum of a Gaussian process and a stochastic inte-
gral with respect to a Poisson random measure, then one uses chaotic decompositions for both
terms in order to obtain a generalized CRP for L.

Another generalization was proposed by D. Nualart and W. Schoutens [24] (see also [29]),
now one decomposes a square integrable random variable in a series of repeated stochastic
integrals from nonrandom functions with respect to so-called orthogonalized centered power
jump processes, these processes are constructed with using of a caddldg version of the initial
Lévy process.

One more generalization (for a Lévy process without Gaussian part) was proposed by
E.W. Lytvynov [22], his approach is based on orthogonalization of continuous monomials in
the space of square integrable random variables.

The interconnection between above-mentioned generalizations of the CRP is described in,
e.g., [22, 2, 30], one more example of a generalized CRP is given in [10, 9].

Let from now L be a Lévy process without Gaussian part and drift (it is comparatively
simply to consider such processes from technical point of view). In order to construct an
extended stochastic integral with respect to L, one can take any generalization of the CRP
described above. Namely, in the case of the "[t6’s CRP" the construction of this integral is
analogous to the corresponding construction in the Poisson case, cf., e.g., [10] and [15]. In
the case of the "Nualart-Schoutens’s CRP" one can use term by term integration of a Nualart-
Schoutens decomposition for an integrand with respect to a random measure corresponding
to L. In the case of the "Lytvynov’s CRP" one can construct the extended stochastic integral as
in the Meixner case [17] (see also [18]): with use of a "special symmetrization" for kernels from
the Lytvynov decomposition, or as the conjugated operator to the Hida stochastic derivative.
The reader can find more information about extended stochastic integrals with respect to Lévy
processes in, e.g., [3, 21, 10, 8, 11, 25, 9], for a general information about stochastic integration
on infinite-dimensional spaces see, e.g., [1].

The main aims of the present paper are to construct the extended stochastic integral with
respect to a Lévy process and the Hida stochastic derivative in terms of the Lytvynov’s gen-
eralization of the CRP; to establish some properties of these operators; and, what is most im-
portant, to show that the extended stochastic integrals, constructed with use of three above-
mentioned generalizations of the CRP, coincide.

The paper is organized in the following manner. In the first section we introduce a Lévy
process L and construct a convenient for our considerations probability triplet connected with
L; then we consider in details the above-mentioned generalizations of the CRP for L. In par-
ticular, we prove a statement about interconnection between the It6’s and Lytvynov’s gener-
alizations of the CRP for L. In the second section we introduce extended stochastic integrals
in terms of the above-mentioned generalizations of the CRP and prove that these integrals
coincide; then we introduce a Hida stochastic derivative in terms of the Lytvynov’s general-
ization of the CRP and establish that this derivative and the extended stochastic integral are
conjugated one to another operators.
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1 LEVY PROCESSES AND GENERALIZATIONS OF THE CHAOTIC REPRESENTATION
PROPERTY

1.1 Lévy processes

Denote R4 := [0, +c0). In this paper we deal with a real-valued locally square integrable
Lévy process L = (Lt):er, (a random process on R with stationary independent increments
and such that Ly = 0) without Gaussian part and drift. By the Lévy-Khintchine formula such
a process can be presented in the form (e.g., [10])

L = /Ot/]Rxﬁ(du,dx), (1)

where N(du,dx, -) is the compensated Poisson random measure of L; and the characteristic
function of L is

E[e™] = exp {t/]R(ei”x -1- iux)v(dx)] , (2)

where v is the Lévy measure of L, which is a measure on (R, B(IR)), here and below B denotes
the Borel o-algebra, E denotes the expectation. We assume that v is a Radon measure whose
support contains an infinite number of points, v({0}) = 0, there exists € > 0 such that

/ 2y (dx) < oo,
R

and
/ x*v(dx) = 1. ©)
R

Let us define a measure of the white noise of L. Let D denote the set of all real-valued
infinite-differentiable functions on IR with compact supports. As is well known, D can be
endowed by the projective limit topology generated by some Sobolev spaces (see, e.g., [5]). Let
D’ be the set of linear continuous functionals on D. For w € D’ and ¢ € D denote w(¢) by
(w, @); note that one can understand (-, -) as the dual pairing generated by the scalar product
in the space L?(R; ) of (classes of) square integrable with respect to the Lebesgue measure
real-valued functions on R;. The notation (-, -) will be preserved for dual pairings in tensor
powers of spaces.

A probability measure y on (D’,C(D’)), where C denotes the cylindrical o-algebra, with
the Fourier transform

/D/ Py (dw) = exp [/]1<+x]1<(6i¢(u)x —-1- iq)(u)x)duv(dx)] , ¢9€D, 4)

is called the Lévy white noise measure.

The existence of y from the Bochner-Minlos theorem (e.g., [13]) follows. Below we will
reckon that the o-algebra C(D') is augmented with respect to y, i.e., C(D') contains all subsets of
all sets O such that #(O) = 0.

Denote (L?) := L?(D’,C(D’), 1) the space of (classes of) real-valued square integrable with
respect to i functions on D’; let also H := L?*(IR.). Substitutingin (4) ¢ = ti,t € R, ¥ € D,
and using the Taylor decomposition by t and (3), one can show that

2
[t putae) = [ (p(u) )
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(this statement follows also from results of [22] and [10]). Let f € Hand D > ¢ — fin H as
k — oo. It follows from (5) that {(o, gx) }x>1 is a Cauchy sequence in (L?), therefore one can
define (o, f) 1= limy_ oo (0, @) € (L?) (the limit in the topology of (L?)). It is easy to show (by
the method of "mixed sequences") that (o, f) does not depend on a choice of an approximating
sequence for f and therefore is well-definite in (L?).

Let us consider (o,1j)) € (L?), t € Ry (here and below 14 denotes the indicator of a set
A). It follows from (2) and (4) that (<o, ) >) ter, CaN be identified with a Lévy process on the

probability space (D', C(D’), u), therefore from now we will identify L¢ with (o, 1o ;).

Remark. In this paper we work in the framework of the so-called "L?-theory of stochastic
processes". In particular, it means that it is sufficient for us to understand L;, t € Ry, as
an element of (L?) (i.e., as an equivalence class in (L?)), and, correspondingly, L is a family of
elements from (L?). But in the probability theory often it is necessary to consider modifications
of random processes with some special properties. For example, one can prove that there
exists a cddldg modification of L (i.e., a random process, which is stochastically equivalent to L
and has right continuous with finite left limits trajectories), and the random measure N from
representation (1) can be constructed with using of such a modification (e.g., [26, 6, 28, 10]).

1.2 Generalizations of the chaotic representation property for Lévy processes

Let N = (Ni)ter, be a Poisson random process. Then, as is well known, any square inte-
grable random variable F (square integrability means that [E|F|?> < o) can be presented as a
series of repeated (It0) stochastic integrals from nonrandom functions with respect to N (see,
e.g., [23] for details). This property of a Poisson process is known as the chaotic representation
property (CRP) and plays a very important role in the stochastic analysis. In particular, it is
simple to construct an extended (Skorohod) stochastic integral if we use the CRP ([15]).

Unfortunately, for a general L the CRP does not hold (e.g., [31]). Therefore there is a natural
question: what can be an appropriate analog of the CRP? There are different answers on this
question. The first one was given by K. It6 [14] (see also [7]) and consists in the following.
Denote by & a symmetric tensor product. For n € N and f, € L2(A ® V)" (here L2(A @ v) is
the space of square integrable with respect to A ® v real-valued functions on R X IR, A is the
Lebesgue measure on R ) set

In(fn) :== / fn(ul,xl;...;un,xn)ﬁ(dul,dxl) ce N(dun,dxn), (6)
(]R+><1R)”

where N as in (1), let also Iy(fy) := fo for fy € R. Denote Z := N U {0}; L2(A ® v)®° := R.

Theorem. ([14]) Let F € (L?). Then there exists a unique sequence of kernels f, € L2(A @ v)®",
n € Z, such that

:Zln(fn) (7)
n=0
and
EIFF = [FIs) = [ IF(@)Pa(dw) anlfnlle oy ®

Moreover, for f, € LZ()\ ® v)®” and g, € LZ()\ ® v)®m, n,meZ,
]E[In(fn)lm(gm)] = 5n,m”!(fn/gn)L2()\®V)§n~ )
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Another approach to a generalization of the CRP was proposed by E.W. Lytvynov [22].
This approach is based on the orthogonalization of continuous polynomials in (L?) (a suitable
procedure of orthogonalization is described in [32]). Note that in the case when a Lévy pro-
cess is a Poisson one, the repeated stochastic integrals from the chaotic decomposition of an
element from (L?) can be identified with so-called generalized Charlier polynomials that are
orthogonal in (L?). Let P = P(D') be the set of continuous polynomials on 7', i.e., elements
of P have a form

Nr .
Fw) =Y (0, fM), weD, NpezZ, fVeD®, fNe) £,
n=0

here Nf is called the power of a polynomial F, (w®0, f(0)) := f0) ¢ D0 .= R. Since the Lévy
white noise measure p has a holomorphic at zero Laplace transform (this follows from (4) and
properties of the measure v, see also [22]), P is a dense set in (LZ) ([32]). Denote by P, the
set of continuous polynomials of power < 1, by P, the closure of P, in (L?). Let forn € N
P, := P, © P,_1 (the orthogonal difference in (L?)), Py := P,. It is clear that

[2)= & P,

(L) = & P
Let f") ¢ D,y € Z.. Denote by : (o®", f(): the orthogonal projection of a monomial
<o®”,f(”)> onto P,,. Let us define scalar products (-, )ext on D¥", n € Z., by setting for
f(”),g(") c pén

n n 1 n n n n
0, = o [ ™, £ (0, ) (), (0)
and let | - oyt be the corresponding norms, i.e., |f(”) lext = 1/ (f("), f(1);. Denote by Héxt),

n € Z., the completion of DEn with respect to the norm | - |ext. For f e ") define

ext

(0®n, )Yy = (L2) — khm (o®" f > ., where D" 3 fk(") Ny £ in ngt (one can easily
—»00 —0

verify the correctness of this definition). Since, as is easy to see, the sets {:(c®n, fmy. f1) ¢
D®"} are dense in Py, the following statement is fulfilled.

Theorem. Let F € (L?). Then there exists a unique sequence of kernels f(") € Héxt), nezZy,
such that
=3 (o®n, f (1)
n=0
and
EIFR = IFIs) = [ IF(@)Paldw) = Y nilf ) (12
n=0
Moreover, forf(”) € ’ngt) and g( m) ¢ ngt), nmedy,
E[: (05", f0) 2 (o, gim) ]
(13)

- / @, fO) i (@, g ) p(dew) = St (F, g ext.
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Remark. It was shown in [22] that in the space (L2) :(0%0, f(0)): = (0®0 £(0)) = £(0) and
(o, fMY: = (o, fM). But forn > 1:(o®", f(")): is not a continuous polynomial, generally
speaking. Moreover, in this case the elements : (0", f(")): are continuous polynomials (and
even generalized Appell polynomials, or Schefer polynomials in another terminology) if and
only if our Lévy process L belongs to the so-called Meixner class of random processes, see [22] for
details.

(

n
ex

)

;1! be the weighted orthogonal sum of the spaces 7

ext -

Remark. Let F,yt := % H The space
n=0

Fext 1s called an extended Fock space. This space has important applications in the "Lévy analy-
sis", see, e.g., [22, 4]. The foregoing theorem states that there exists an isometrical isomorphism
between F,y; and (L?), this isomorphism is described by (11).

One more generalization of the CRP is proposed by D. Nualart and W. Schoutens [24] (see
also [29]). Now one decomposes F € (L?) in a series of repeated stochastic integrals from
nonrandom functions with respect to special random processes generated by a cddldg version
of L. Here we describe a modification of this approach offered by E.-W. Lytvynov [22]. Let

pu(x) = x"+ @y, x" T+ +agx, a, €R, jE{L,...,n—1}, n€N, (14)

be orthogonal in L?(R, v) polynomials, i.e., for n,m € N, n # m, fIR Pn(X)pm(x)v(dx) = 0. For
n € N we define random measures Y(")(A) on B(RR . ) by setting

Y (A) = /IR  1a()pu(x)N (A, dx) = (Lapa). (15)

Note that the random processes Yt(n) (Yt(l) = L) from [24] are connected with the measures
Y(")(A) as follows: Yt(”) =Y ([0,4]).

Proposition. ([22]) For eachn € N and ") ¢ D" we have

n!
o, fM): =
, o j—1§k:, >y, splespt(Ih)sn - ()
lysy+-+lgsg=n

(16)

n
X /1;51+~~~+Sk f( )(ul, .. .,ul, e ,1/[51, e ,1/[51, e ,1/[51_’_.‘._._5](, .. "u51+"‘+slg)
£
ll 11 lk

Y (duy) - YO (dug,) - - Y(lk)(dulermjLsk)‘

One can show that formulas (16) hold true for f (n) e ng), therefore substituting (16) in

(11) one obtains a variant of the Nualart-Schoutens decomposition for F & (L?). Moreover,
substituting (16) in (10) one can obtain the explicit formulas for the scalar products in ‘H §ZZ )
Namely, for f, € 12 (A®@v)®", n € N, denote by [fy] sym the orthogonal projection of f; onto

Lz()\ ® 1/)@” (i.e., roughly speaking, the symmetrization of f,,(-1,®1;...; 4, ®,) by pairs of ar-
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guments (-1, ®1), (-2, ®2) etc.). Further, denote by || - ||, the norm in L?(RR, v). Since (see (15))

I 1
/H{Sj*"'“k f(”)(ul,...,ul, .. .,u51+‘.‘+sk,...,u51+.‘.+sk)Y( 1)(du1) Y k)(dusl+,.,+sk)

I b

Iy

- /( o FO gyt sopsps oy tisy oot )1 (1) - 1 (X g sy)

11 lk (17)
xﬁ(dul,dxl) e N(dusﬁ...Hk, AXs) 4 ts;)
= 51+...+Sk([f(n) ('1, A TR ’;S]+"'+Sk/ ey .Sl+"'+slg)pll (.1) s plk(.51+"'+sk)] sym)’
ll lk
the next statement from (9) follows.
Proposition. ([22]) For f("), ¢(") ¢ D", 1 € N, we have
nt  llpnlloyzs o llpgdlvy 2
<f(n)'g(n)>m: Z s'---s'< ll' ) < lk' )
ks €N: =1k, Iy >l>->l, ©1* k: 1: k-
lysy+-+lgsp=n
X /1;124’...4»51( f(i’l) (‘L{l, ceey ul, ey 1/[51, ceey 1/[51, e ,1/[51_’_.‘._._5](, ceey u51++5&) (18)

ll 11 lk

n
xg( )(ul, o ULy Uy Usy e Uy sy .,usl+...+5,§)du1 o dUs 1 ogs, -

ll ll lk

In particular, forn = 1 <f(1),g(1)>ext = (f(l),g(1)>; in the case n = 2 we have (f(z),g(2)>ext =
2 2 n n n n
(f?),g@) + 1l [ £) (u, 1) g® (1, u)du; in general (£07), g)py = (F01), g} 4. ..

As is easy to see, formulas (18) hold true for f (n), g(”) e H"

ext

It follows from (18) that HY =9 = L?(R+): by (14) p1(x) = x and therefore by (3)

ext —
Ipllv =1 (19)

and for n € N\{1} one can identify H®" with the proper subspace of Hgg that consists of

"vanishing on diagonals" elements (i.e., f(") (u1,...,uy) = 0if thereexistk,j € {1,...,n} such
that k # j but uy = u;). In this sense the space ngt) is an extension of H®" (this explains why
(n)

we used the subindex ext in the designations H (-, ext and | - ext). (As a consequence, the

ext’

[e 0] o~
extended Fock space F,y; is an extension of the Fock space @ HEMnl)
n=0

Remark. A random process L of form (1) is a Poisson one if its Lévy measure v(A) = 61(A), i.e.,
if v is a point mass at 1. This measure does not satisfy the conditions accepted in this paper,
nevertheless, the next statements are fulfilled.

1) It6 decomposition (7) holds true and can be interpreted as the "classical" CRP: now we
have f, (11, x1; .. .5 Un, Xn) = f(”)(ul,...,un)xl -+ x, and (see (1))

In(fn):n!/OOO/R/Oun/R---/Ouz/Rf(”)(ul,...,un)xl---xn

x N (duy,dx;) - - N(duy, dx,) (20)
(e ] Uy U
:n!/ / / f(”)(ul,...,un)dLul---dLun.
0 0 0
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2) Decomposition (11) holds true, now : <o®”,f(”)> :, f(”) € H(n) = H®”, n € Z., are the

ext
generalized Charlier polynomials that can be identified with repeated stochastic integrals (20).

3) The original Nualart-Schoutens decomposition [24] (see also [29, 10, 9]) holds true, now
YW = Land Y = 0if] > 1.

4) Polynomials (14) are not uniquely defined if n > 2; nevertheless, for any "version" of py,
n > 1, we have ||pn|lv = 0. Therefore one still can define "versions" of the random measures
Y(")(A), but representations (16) takes now the form

(@1, M)y = " F g, u) YD (dug) - - YD (duy)
+
o rlp U
— ! (n) (1) oy
n./o /0 /0 FO g, o) YD (i) - - YD (duy)
(e Un Us
— gl (n)
1’1./0 /O /O f (ul,...,un)dLul dLun

(all another integrals from (16) are equal to zero in (L?)).
5) Formula (18) becomes

0,8 et = [ FO )™ i) i = (£, g,
+

and this is natural because now Hg;t) = 7-[®”.

Finally we establish the following statement (cf. [2]).

Proposition. The kernels f, € L2(A ® v)®", n € N, from Ito decomposition (7) for F € (L?),
can be presented in the form

(Iis1+ - + Igsg)!

s €N Tk, Iy esl, S0 sl (l!)t - - - (It

5]
s+ s=n
o) (21)

fn('lr.l}---/"n; .n) =

l1s1+-+ ks
X[f(ll kk)('l,...,'l,...,'51,...,‘51,...,'71,...
N e’

I I lk

XPh(‘l) o pll(.sl) U plk(.”)]sym

(the equality in L*(A ® 1/)®” ), where f) ¢ ’Hg@, k € IN, are the kernels from decomposition
(11) for F.

Proof. Formally one can obtain (21) by direct calculation with use (7), (6), (11), (16) and (17), but
we have to show that the series in the right hand side of (21) converges in L?(A ® v)*" and can
be integrated term by term by N(duq,dxq) - - - N(duy,dx,). Fixn € N and for M € IN set

(I1s1 + - - + Ixsg)!

ks EN: j=1,...k M21>->1), syl Sk!(lll)Sl T (lk!)sk

SM(1, 9155 ®n) i=
s+ tsp=n
X [f(l1s1+"'+lk5k)(.1

,...,'1,...,'51,...,'51,...,'n,...,'n)
N—_——

h I lk

xpry(01) - pi(05,) -+ pr(on)] € LP(A @ V)T,
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It follows from the Nualart-Schoutens decomposition for F and (15) that

2y 1 . N ...N
3(L%) Nljlinoo — Sm(ur, x1; ...y, Xy)N(dug, dxy) - - - N(duy, dxy,)

(1151 + -+ lkSk)!

lovog (1151 ... (1.1)S
ks iEN: =Lk, > >l 51 Sk'(ll') ! (lk') K
S+ tsp=n

i ]
x/ [f(151+ +’<Sk)(u1,...,u1,...,usl,...,usl,...,un,...,un)
(Ry xR)" ﬁ,—/ —_— al,_/
1 I k

xpr(x1) - pry (xs,) - - - plk(xn)}symﬁ(dul,dxl) - N(duy,dx,).

Further, since <f(1R+X]R)n SM(ul,xl;...;un,xn)ﬁ(dul,dxl) - K](dun,dxn))M N is a Cauchy
€

sequence in (L?), by (6) and (9) (Sm) is a Cauchy sequence in the space L2(A @ v)®",

MeN
therefore
3 Lz()\ & V>®n_ lim SM('lr ® ;... n, ’n) = SOO('lr O ;... ny ‘n)
M—>00
. (1151 + -+ lkSk)!
Kl EN: =1,k >, spleeest(lh)sn - - (I!)
s1+As=n
X [f(llsl+'”+lk5k)('1/ A VRN A I VAREN A TP RRRY R VR n)
——
h I lk
Xpll (.1) U pll(.sl) e plk(.n)}sym'
Again by (6) and (9)

H /(]R <R)" (Soo(u1, %15 .5 1, Xn) — Spa(utn, X15 - . 5 U, X))
N

- _ 2
X N(duq,dxq) - - - N(duy, dx,) "

— — 2 &
5 = 1[Seo = Smll 2y Moo

therefore f(]R+><IR)” Seo(U1,X1; .. .5 Up, xn)N(dul,dxl) e ﬁ(dun,dxn) can be calculated term by
term, thus the statement of the proposition is proved. O

More information about described above generalizations of the CRP and about the inter-
connection between them is given in [22, 2, 30]. Of course, another generalizations of the CRP
are also possible, see, e.g., [10, 9] for a corresponding example.

2 EXTENDED STOCHASTIC INTEGRALS

21 Constructions and some properties of extended stochastic integrals

Let AV be a family of all sets O € C(D’) such that u(O) = 0 (we recall that the o-algebra
C(D') is augmented with respect to u); F; = o(Ly : u < t) be the o-algebra generated by the
random process L up to a moment of time t; F; := ﬂt]-"u UN. Then (Ft)ter, is a flow of

u>
o-algebras. It folows from the definition of L, its representation in the form L; = (o, 1[0,t)>r
and (13) that L is a locally square integrable random process with orthogonal independent increments.
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Therefore L is a martingale with respect to the flow (Fi)ier, with a Doob-Meyer decomposi-
tion Lf = my + Ay, t € Ry, where m is an F;-martingale and A is an increasing nonran-
dom function [12]. One can easily show that now A; = ¢, thus, L is a locally square integrable

normal Fi-martingale. Therefore one can consider the Itd stochastic integral with respect to L
f1R+ o(u)dLy : (L?) ® H — (L?) with the domain

dom< /]R O(u)dLu> ={Fe (L?) ® H : F is adapted with respect to (Foter, }- (22)
N

But since the class of F;-adapted functions is a comparatively narrow subset of (L?) ® H,
it is natural to try to extend the notion of a stochastic integral to a more wide class of elements
from (L?) ® H. An idea of such an extension can be the following. Let F € (L?) ® H. Then by
(7) F can be presented in the form

F() = i Li(fu), fu € L2(A0V)5" @ H. (23)
n=0

Since the integration by the random measure YD) (see (15)) is an extension of the integration
in the It6 sense by the Lévy process L (L; = Y1) ([0, #])), and since by (15), (6)

W (du) = xN (du, dx
/IR+ Ly (fiuu) Y (dur) /RMRIn(fnlu) N(du, dx)

= Fru (1, X155 U, xn)xﬁ(dul,dxl) ce N(dun,dxn)ﬁ(du, dx)

(Rs xR)n+1
— (R, xR)1 [fn,u(ul,xp .. .;un,xn)x] symN(dulrdxl) . N(dun,dxn)ﬁ(du, dx)
= n+1(]?n>r
where fi = [fy, (1,015 n, on)e Jsym € L2(A® v)®1+1 it is natural to define an extended

stochastic integral f1R+ u)dL, € (L?) by setting (cf. [10])

o]

/. F ) = ¥ bl (24)

The domain of this integral, i.e., of the operator f]R+ o(u)dLy : (L?) @ H — (L?), consists of
F € (L?) ® H such that (see (8))

H/1R+ dLu

Let t1,tp € [0, 40|, 11 < tp. We define an extended stochastic integral ft dLu (L) ®
H — (L?) by setting

Z n + 1 ”fn”LZ )\®1/ ®n+1 < oo (25)

153 ~ _
/t o)Ly = /IR o001 ()L, (26)

i.e., instead of F € (L?) ® H we integrate the element Fly 4, € (L?) ® H. The domain of
integral (26) depends on t; and t,: now the kernels in estimate (25) depend on t1 and t,. Note
that by analogy with (26) one can define an extended stochastic integral [, o u)dLy : (L?) ®
H — (L?) for any Borel set A C R, it is necessary to use 14 instead of iy 2)

The next statement follows directly from results of [10] (see also [9]).
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Theorem. Let F € (L?) ® H be integrable by It6 (i.e., F satisfies (22)). Then for any t{,t, €
[0, +00], t1 < tp, F is integrable in the extended sense and

t ~ 1)
/ F(u)dLy, = / F(u)dL. 27)
tp t

Remark. For convenience of a reader we describe an idea of a proof of this very important
theorem. In the first place, by the Nualart-Schoutens decomposition one can show that for an
integrable by It6 function F the kernels f,.,n € N, from decomposition (23) satisfy equalities

fn,‘(‘lr €1,/ s ‘n) = fn,~(‘1/ O, 7Ny ’n)l[ol.)n(‘ll ceey 'n)-

Since under this conditions f]R+ Ly (fu) YD (du) = f]R+ Li(fuu)dLy, n € Z4, equality (27)
follows directly from the construction of the extended stochastic integral. In the second place,
since L is a normal martingale, for F satistying (22) we have

H/]R+ 1[t1 tz )dLu (L2
therefore condition (25) for F1y; ., is fulfilled.

= ”Fl[tl,tz) ”(L2)®7-tr

Another idea of an extension of the Ito stochastic integral is based on term by term integra-
tion by YV (du) of the Nualart-Schoutens decomposition for F € (L?) ® H. Namely, by (11)
and (16) we have

0) > n!
R P S TP e ()

n=1 kljs/eN: j=1,.k, Ij>->1,
Iysy+-+lgsp=n

28
X /]RSlJF'“JrSk f(n) (ulz e UL, /ysl+"'+5k’ Tt ulererS’B) ()
+ ll lk
XY(ll)(dul) . Y(lk) (du81+"'+5k)’ f( ") € ngz ®H,

therefore it is natural to define an extended stochastic integral f]R+ F(u)dL, € (L?) by setting

/]R+ / fu dL +Z Z 51!...5]{[(1:![)!51...(lkz)Sk

n= 1kl<€]N] 1.k, Iy >>1,
lysy+-+lgsp=n

n 29
X /1;51++5k+1 f]/g )(ull M 4 ul/ A Iz’lsl_.__._sk/ M 4 u51++512) ( )
+ \

ll lk

Y (duy) - YO (dug 4y, ) YD (dur).

In order to describe the domain of this integral, denote

-fl,S (‘1, DRI PR ‘51+‘.‘+5k, ey '51+‘“+5k’ )

ll lk

n .
f( )('1"‘".1"'";51+"'+Sk"""51+"'+Slg)’ lf lk > 1
. ll lk

/o1 £(1) 1
Sk + 1f ('1, R VR A TR ETE AP PR '51_0_.‘._0_5](), if lk =1
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Then the domain of f]R u)dL, : (L) @ H — (L?) consists of F € (L?) ® H such that

2
F(u)dL, — (0)124
H/m WL /mlfu 2du

e (o

n=1 kljsieN: j=1,...k, lj>->1, lk'

1151+“~+lk5k:ﬂ (30)

X /]R§1+~~~+sk+1 U‘;(’Sﬂ) (ul, cee UL Us sy e U s u) ’2
+ v

ll lk

><du1 cee dusl+.‘.+skdu < oo,

the representation for H f1R+ d Ly H ) can be obtained by direct calculation with use (15),
(6), (9), (19) and the orthogonality of polynomlals (14) in L?(R, v), see also Lemma 4.1 in [22].
Theorem. The extended stochastic integrals f]R+ )dL and f]R dL,,,, given by (24) and
(29) respectively, coincide.

Proof. By definition, for F € (L?) ® H, fR u)d] Lu is the result of term by term integration of
It6 decomposition (23) for F by Y1) (du); and fIR u)dLy, is the result of term by term integra-

tion of Nualart-Schoutens decomposition (28) for F by Y1) (du), if the results of such integra-
tion belong to (L?). Therefore it is sufficient to show that for each n € N f]R+ L (Fuu) YD (du)
is the result of term by term integration of decomposition (28) for I,,(f,.) by Y (du).

Fix n € IN. By (the proof of) (21), (6) and (15) decomposition (28) for I,,(f,,.) can be pre-
sented in the form

(1151 +--F lkSk)!
e KljsieN: j—;k, R UG R ()
S1+-tsp=n
i et ]
X /(]R " [f( 1t +ksk)(u1,...,u1,...,usl,...,usl,...,un,...,un) (31)
X
" ll 11 lk

Xpry(x1) - pry(xsy) -+ plk(xn)}symﬁ(dul,dxl) .- N(duy, dxy).
For M € N set
(lisy+ - - + Lisp)!

SM(-1, 015, 0n0) 1=

Kl EN: =1,k M2ly>->ly, sl sl ()
S+ tsp=n
1 et ]
[ (e s )
I I I
Xpll(.l) o pll(.sl) o plk(.n)}sym € LZ(A ®V)®n ®H

Then by (6), (9) and (3)
H /]R+><IR)”+1 (fau (w1, 2155 i, Xn) — Spa(u, X155 U, X 1))
NT ~ ~ 2
x N (duy, dxy) - - - N(dun,dxn)xN(du,dx)H .
= (n+ D! fu = [Suolsym T2 rgyonss < (1 DU = Sl oyinan 12 O
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therefore
/ Spm(uq, x1; . . .;un,xn;u))ﬁ(dul,dxl) -« N(duy, dx,)xN (du, dx)
(]R+><IR)”+1
— X155, X )N (duq, dxq) - - N(duy, dx,)xN(du, d
ad /(]RM]R)ann,u(ul X1 Un, Xn)N (duq,dxq) (duy, dx,)xN (du,dx)
In(fn,u)y(l)(d”)
in (L?) (see (6), (15)). But by construction
Sm(u, x1; .. .ty Xp; u) )N (dug, dx1) - - - N(duy, dx, ) xN(du, d
/(]R+><IR)”+1 m(ug, x1 Un, Xp; u) )N (duy, dxq) (duy, dx,)xN (du, dx)

tends in (L?) to the result of term by term integration of the right hand side of (31) by Y1) (du)
as M — oo, thus the necessary statement is obtained.

Finally, the domains of integrals (24) and (29) coincide because both these domains are
given by the condition: the result of integration is an element of (L?), see (25) and (30). O

By analogy with (26) for t1,tp € [0, +c0], t; < tp, set

to ~ ~
/ o(u)dLy = / o()1g, 1) (#)dLa, (32)
t R4
then L, = Lu In what follows, we denote integrals (24), (29 YdLy,
hen [, o(u)d] 2 o(u)di hat foll d grals (24), (29) by [, o(u)d]

integrals (26) and (32) by ft u)dL,.

Remark. Let F € (L?) ® H be such that the kernels from decomposition (28) f.(n) e H" @
H C 7-[( ") ® H (the inclusion in the generalized sense described above), n € N, i.e., all f.(")

ext
"vanish on diagonals". In this case (28) has a form

Z IRH ~ ul; .. ~,un)Y(1) (dl/Il) s Y(l) (du?l)

00 u
O Zn!/ / / F s, . un)dLy, - - dLy, ;
= ""Jo Jo 0

(23) reduces by (31) to

(33)

Z / f. ul, o U)Xy - Xy N(duq,dxq) - - N(duy, dx,,)
]R+><1R

~ f. +n;/mf." (1, -, 1) YO (dug) - - - YO (duy)

(see (14) and (15)); and the extended stochastic integral can be constructed as in the Poisson
analysis: by (24)

/IR+ F(u)dLy

= Z / n+1 A( )(ulr .. ~/un+1)x1 ce XnJrlj\v](dul/ dX1> s f\vl(dun+1,dxn+1) (34)
Ry x

n=0
0 un+1 u2 7(n)
Z n-+ 1 / / / f ulr . unJrl)dLul ’ dLun+1’
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where f) € HO 1 « 4D ¢ 7. are the symmetrizations of f") by all arguments

ext

(more exactly, the projections off‘(n) € 1" @ H onto HO" 1),

Finally, by (11) any F € (L?) ® H can be uniquely presented in the form

F() = Y 1o, fMy: £ e q™ gy, (35)
n=0

therefore it is natural to construct an extended stochastic integral that is based on this decom-

(n)

position and correlated with the structure of the spaces H,,;. In the case when L is a process
of Meixner type (e.g., [22]), such an integral is constructed and studied in [17]. The idea of its

construction is the following. Let at first the kernels from (35) f.( e Hon c H" o n,

ext

n € Z. Then by (16) decomposition (35) reduces to (33) and the extended stochastic integral
can be defined by (34) that now can be written in the form

o0

/]R Z o@n+1 j?(n . ]’c\(n) c 1O+ (36)
+

(n)

ext

(n+1),

Of course, general elements of H oxt

® H can not be projected onto H,.

f,(”) € ngt) ® H one can construct kernels ﬂ” € Hé:f Y that can be used in order to define

the extended stochastic integral by (36). For a Lévy process L that we consider in this paper, the

; nevertheless, by

situation is quite analogous. Namely, let f.( cH gxz ® H, n € IN. We select a representative (a
function) f.(n) € f.(n) such that

fé")(ul,...,un) = 0if forsomek € {1,...,n} u = uy. (37)

Let /(") be the symmetrization of f.( by 1 4 1 variables. Define f") € H EZ;L ) as the equiva-
(n+1)

ext

lence class in H\" generated by f(

Lemma. For each f,(n € 7-[( ") ® H, n € IN, the element ]?(” E H(nH) is well-definite (in

ext ext
particular, ﬂ”) does not depend on a choice of a representative f f satistying (37)) and

F et < £ (38)

H e’

Proof. Let f.(”) € H £x2 ®H,n € N, and f f.(”) be a representative of f.(") satisfying (37).
Without loss of generality we can assume that f.(n) (‘1,...,n) is @ symmetric function by the

arguments -4, ..., -, therefore

1 ~(n
f(”)(ul,...,un,u) = n——{—l[ﬁs )(ul,...,un)

. . (39)
—i—fl(,f)(u,ul,...,un_l) + .- —|—fl(,;1)(u2,...,un,u)}.

Denote f(”)(ul,...,un,u) = fé")(ul,...,un). Using (18) and the well-known inequality
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2 .
Y m|” < pY)_, |a|* we obtain

- (n+1)! /|lpn vy 25 111w\ 255
F 2, = Y | 51< 1111 ) < kl )

) B I
kljsieN: j=1,...k, Iy >>l, 1 k ‘

lysy+-+lgsg=n+1

(n) 2
X /ﬂziﬁ"'“k Y (g, oo i, Uy egisy e ooy Uy egesy ) [ TAU -+ Al 4o g,

~~

ll lk

(n+ 1>!' <”P11HV>251 o (”PlkHV>ZSk n+1

<
- ll' lk' (ﬂ + 1)2

. sl 5!
Kljsi€N: j=1,..k, Iy >--> 1, 21 k
Iysy+--+lsgp=n+1

F(n) 240 ...
X [/H{iﬁ”'“k Y (i, i, e Uy egsy e ooy Uy gy ) [TAU -+ - AUy 4 g,

ll lk

“(n 2
+\/1Rj}+"'+sk ‘f( )(u51+‘.‘+5k,1/l1,...,u1,...,M51+‘.‘+5k,...,1/[51_9_.‘._._51()’ dul A 'dusl_._.‘._’_sk
ll lk—l

i )

4+ 4 /IRSH"'W \f( )(ul, o Ul e Uy gy e ey Uy epsy, W) [“dug - - dusl+.,.+sk}
+ v

Iy

(arguments over are absent). It follows from (37) that if [; > 1 then all terms in square

0
brackets |- - - | are equal to zero; and if Iy = 1 then for a fixed collection k, I., s. all nonzero terms

in square brackets |- - - | coincide and the quantity of such terms is equal to s;. Therefore we
can continue our calculation as follows:

n! s lloy2r o llpny vy 250
|f |ext Z sq!- - l(k_1)1< 111! ) < kll )

kljsi€N: j=L,..k, Iy >->1, Sk—1:\5 le—1!
1151+ +(Sk 1)=n

F(n) 24004 - ..
X /H{Sj*"'”k | (W, ety e s s 1y ey Us sy ) [ AU - U g,
I

B Z n! <HP11”1/>25'1 <”Pl HV)ZS
KILSTEN: =1 b, 1>, Sl "Sllc’! li! l/'

!
51+ +1!

K k’

(n) )
x /Rs’1+~~+s§(,+1 ’fu (”11---r”1r~~~r\”s’1+~-+s;<,r~~~r”s’1+-~+s;<,/)’ duy - "d”s’1+~-+s;<,d”

+ l’ ’
1 I,
2
=1 o
(here we used (19)), hence f(”) generates an equivalence class f(") € HEZ;L Y and estimate (38)

is fulfﬂled
Let g f be another representative of f.( with property (37), §(") be the correspond-

ing element of TR Then, obviously, A f.(") g( "eoen” ) ® H satisfies (37) and

ext ext

the corresponding to W™ element of 7"V 7 = fln) — 3" = 0 by (38). So, 7 does not

ext
depend on a choice of a representative f.(") f.("). O
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For F € (L?) ® H we define an extended stochastic integral f]R+ F(u)SL, € (L?) by setting

o0

/ F(u)dLy, = Z :<o®”+1,f(”)>:, f(”) € Hg;’fl), (40)
Ry n=0

and f(”), n € IN, are constructed by the kernels f.(")

’ng} ® H from decomposition (35) for F. The domain of this integral, i.e., of the operator
f1R+ o(u)éLy : (L?) ® H — (L?), consists of F € (L?) ® H such that (see (12))

H/IR+ 5Lu

Theorem. The extended stochastic integrals f]R+ u)dL, and f]R u)oLy, given by (29) and
(40) respectively, coincide.

where f0 .= f.(o) e H =HY

ext’

Z n+ 1)1 f"M2, < oo (41)

Proof. Let at first F(-) = :<o®”,f ") )€ (LZ) ®H, f.(") e H" @ H,neN. Using (40), (16),

ext

the construction of the kernel f(” € 7—[(”+ (in particular, (39)) and (29) we obtain

ext
(n+1)!

l...g.1 1\51 ... 1)s
k,l]-,sjelN: j=1k, >, 51 Sk'(ll') 1 (lk) k
lys1+-+lgsp=n+1

/IR+ F(u)6Ly = : (6¥™+1, fin)y. —

£(n)
X/]RSﬁMka (U1, .. UL, e Usyqoogsys - ooy Us4ootsy)

+ I I
) Y (duy) - YU (dug, 4y,
nt(n +1)s

Sk—
Kl €N: =1k, [y > > =1, sl Skfl!(sk - 1)!Sk(11!>sl e (lk*ﬂ) £ 1(71 + 1)
L+t _1sg_q+(sp—1)=n
:(n)
X /H{51+"'+(Skl)+l fu (ul, e, U, usl+...+sk71+1, ceey u51+"'+(5k*1)>
+
I

XY(Zl)(dul) e (1) (dusl-i-“"f‘(sk_l))Y(l) (dl/l)
[ e — [ FiL
Ry

Ry

In a general case the result follows from the obtained equality, (40) and (29); the domains
of integrals (29) and (40) coincide because both these domains are given by the condition: the
result of integration is an element of (L?), see (30) and (41). O

By analogy with (26), (32) for t1,t; € [0, +0c0], 11 < f, set

ty
/ F(u)6Ly = / F(u)1}, 1) (1)0Ls, 42)
then ft u)éL, = fttz u)dL,. In what follows, we denote integrals (40) and (42) by
fIR dLu and ft u)dLy respectively. Of course, the domain of integral (42) depends

on t and t> and can be described by (41), where the kernels f(” ,n € Z,, are replaces by the
kernels f[(l:)t e #\"™ constructed with use of F ()1t 1, () instead of F(-).

ext
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Remark. Since integrals (32) and (42) coincide with the extended stochastic integral (26), these
integrals are extensions of the It6 stochastic integral. Note that for integral (42) this fact can be
proved by analogy with the corresponding proof in the "Meixner analysis" [17] (see also [19])
with using results of [4].

2.2 A Hida stochastic derivative and its interconnection with the extended stochastic inte-
gral

As is well known, in the "Poisson analysis" the extended stochastic integral is the conjugate
operator of the Hida stochastic derivative. In the "Meixner analysis" the situation is analogous
[17]. Now we will show that this result holds true in the "Lévy analysis".

(n)

In order to define a stochastic derivative on (L?) we need some preparation. Let g(”) € Hoxtr
n €N, ¢ ¢ ¢ be a representative of ¢("). We consider ¢(")(-), i.e., separate one argument

of ¢, and define g™ () € 1"V @ 9 as the equivalence class in 1 @ uy generated by

ext ext
g"e).
Lemma. For each g ¢ ng}, n € N, the element g\"(-) € ng;” ® H is well-definite (in
particular, g(”) (+) does not depend on a choice of a representative g<”) € g(”) ) and
18 ()0 < 18 ext @3)

ext

Proof. Without loss of generality we can assume that ¢(") is a symmetric function, therefore
one can separate the last argument. Using (18) and (19) one can write

- nt  cllpnllvye gl y 2
|g(n) gxt = |g(n) gxt = Z < 111! ) < lkk' )

, sl - 5!
kljisi€N: =1k, Iy >->l, °1 k

lysy+-+lgsp=n

(n 2
X /]RSﬁ'"Hk |g( )(ul,...,ul,...,ysl+...+sk,...,usl+...+sﬁ)| duq - - dug, ... 4s,
+ v
ll lk

_ n! [[pi [lv 251 [[P1 Il 25
N Z 51!-~-Sk!< lll! ) < lk! )

k,[j,SjEN: j:l,...,k, 11 >~~~>lk>1,

lysy e tlsp=n

X /]RSﬁ“‘Hk ]g'(”)(ul, co U, .,usl+‘.‘+sk,...,u51+‘.‘+sk)\2du1 codUs 4ogs,
" ll lk
(n—l)!n (lelHV)Zsl <lek1”1/)2skl

.. (s, —1)! ! !
KljsieN: j=1,k, I >->h=1, 51° sk-1!(sk — Dlsg \ Iy! le—1!
Iysy+-tlp_qsp_1+(sp—1)=n~-1

+

5(n) 2
X /ﬂ(?*‘“*(skl)“ ¢ (”1"1'"”1""'”51+~‘+Sk1+1"'"”51+~‘+(Sk—1)'”)|
1
Xdu ... du _ du > (") . 2 — (") . 2
1 s+ (s—1) 4% = 1§ () HO D e 18" () H D g

because 1 > si, hence ¢(")(-) generates an equivalence class g(")(-) € Hth_ Y ® H and estimate

(43) is fulfilled.
Let f(") € ¢(") be another representative of ¢g("), f(")(.) be the corresponding element of

1"V @ H. Then h(" = ¢ — fm €0 ¢ 7") and the corresponding to /(") element of

ext ext
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oxt Ve hn V(1) =g () = FM(.) = 0 by (43). So, (") (-) does not depend on a choice of a
representative g(”) g("). U

2401

Remark. Note that in spite of estimate (43) the space H" ne IN\ {1}, can not be considered

ext”
as a subspace of 71"V @ H because different elements of 7-[( t) can coincide as elements of

ext
1" o H.

Let tq,tp € [0, +00], t; < tp. We define a Hida stochastic derivative Ly 10)(1)0.G € (L>) @ H
for G € (L?) by setting

[ee]

Ly i) ()3.G = Y (n 4+ 1): (0%, gV ()1, 1) ()3, (44)
n=0

where g("+1) ¢ HEZ;L Yone Z., are the kernels from decomposition (11) for G, in point as
elements of 7-[( t) ® H. The domain of this derivative, i.e., of the operator 1, ;,)()9. : (L?) —
(L?) ® H, consists of G € (L?) such that

112, ()O-GlF 2y = Z;)(n + 1)1+ 1) 18" ()L (- ”#"2@% < oo, (45)
n=
Theorem. For arbitrary t1,t; € [0, +00], t; < t, the extended stochastic integral ft dLu :

(L?) ® H — (L?) and the Hida stochastic derivative Ly 1) (1)0. (L?) — (L?) ® H are con]u-
gated one to another:

/: (0L = (1) (19)°0, (2. = ([ odL)” (46)

51
In particular, ft u)dL, and Lit, 1) (). are closed operators.

Proof. First we note that the operators (1[t1 t,)(+)0.)" and ( G o&\L) " are well-definite because
the domains of 1f;, ;,)(+)d. and ft 1)dL, are dense sets in the corresponding spaces. Further,
let us show that for F € dom( ft dLu) and G € dom (1}, 1,)(+)9.)

(/tZF(”)dALu'G> o (F(-),1 [t1,t2) ()0 G)( 2)eH: (47)

ty (L?)

By (42), (40), (11) and (13)
t ~ 0
_ 7(n) (n+1)
< x/t] F(u)dLu, G) (Lz) B VLX::O(n + 1)!<f[t1’t2)’g ! >EXt’

where f[(trll)tz), g(”+1) € H("H) n € Z., are the kernels from decompositions (40) and (11) for

ext

fttlz F (u)dA L, and G correspondingly. On the other hand, it follows from (35), (44) and (13) that

(e 9]

(FO) ) (02.6) 1290 = 1 (14 DU, 8" D O (0)) g

n=0 ex
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where f.(n € ngz ®H, n € Z., are the kernels from decomposition (35) for F, g(*+1) ¢
Hé;f Uon e Z., are the kernels from decomposition (11) for G, in point as elements of

ngt) ® H. Therefore in order to prove (47) it is sufficient to show that for eachn € Z
1 _ (M) 1
<f[;f,t2),g i )>ext - (fn ,g(n+ )(')1”1'&)('))%22@%'

The case n = 0 is trivial, so we consider the case n € IN. Let f.(n) (‘1,---,n) € f.(n) be a repre-
sentative of f.(") satisfying (37) and symmetric by the arguments -1, ..., -, §"*1) € ¢"*1) be
a symmetric representative of g("“) Denote f[(tlz)tz) (Ug, ..., U u) = fZE”) (ug,..., uﬂ)l[tl,tz) (u),

(n) ) : #(n) n)
and let f 1) De the symmetrization of f by all arguments. Then, obviously, f[fl,tz) € f[t1 b
Using (18) and (19) we obtain

<f[(trll,)t2); (n+1) >ext <f[n -n+ >ext

bt
= Z n+1)"<”;lf|’v)251 . <M)25k

!

s EN: =1k, >, Sk
Iysy+-+lsp=n+1
7(n)
X /]RS1+"'+Sk f[tl,tz)(”lf---fulf---/?S1+~~+Sk/--"”51+"'+S;5)
+ g
h

I
-(n+1)(

Xg Uy ooy Ul ooy Uty e ooy Usqports, )AUT <+ - AUgy 4ot
7 4 4 7 1 k/ 4 1 k 1 k

Iy

B nt llpnlloyzse ol vy 2
_kls Z 51!-'-Sk!< ll' ) < lk' )

Ajis ]'G]N: =10k, > >,
1191+---+lksk:n+1

..(n)
X [/]1??*"'“k f[tl,tz)(”lf---fulf---/”S1+~~+Sk/---f”51+'~+sk)

h Iy

-(n+1)(

Xg Uy ooy Ul ooy Uyt o ooy Usyports, )AUT + - AUg, 4o tg
4 7 4 7 1 k/ 4 1 k 1 k

I

Iy

+ f(n) (us —+---+s ul,...,ul,...,us —+---+s ,...,1/[5 —+---4s )
]Rs+1+~~+sk [fllfz) 1 k. 1 k 1 k
ll lk—l

L (n+1
xg( )(ul, o Ul e Uy gy e ey Uy epsy )AUT - - AU g,

I

..(n)
_|_ “ e —|— /1;51+~~+Sk f[fl,fz)(ul’ ceey ul, ceey u51+‘.‘+sk, ceey usl_._.‘._._sk, ul)
£ \/

-1 I
x ¢ (uy, L uy, Usy oot o Usy s )T < dusl+...+sk]
h I
_ 3 n! <||P11|!v>251 o (HPllev)ZSkl
kl]s]eJN =1k, Iy l=1, 51! s Sk,ll(Sk — 1)! 11! lk,ﬂ

lysq 4+l 18 _1+(sp—1)=n

(I’l)
X /]RSH'”*(skl)“ f[t1,f2) (ul, e, U1, u51+"'+5k—1+1’ coey u51+“‘+(5k—1)’ u)
+ v

I
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-(n+1)(

X ¢ Uy weo Ul e e Uyt 41y e s Ugy gt (s, 1), W) AU -+ - dUg s 1 AU
N AR At TR R k=117 s st (s —1)7 s1+-+(s5—1)

I

= (f‘(n)’g.(n_._l)(')l[fl/fz)(.))’H< agp = (f~(n)/g(n+l)(')1[t1,t2)(')) o

ext ext

Now in order to prove equalities (46) it remains to show that the domains of the corre-
sponding operators coincide.
1) Let us show that dom((l[tlltz)(-)a.) ) = dom( ft u)dLy). By definition, F belongs to

dom (1}, 1,)(-)9.)*) if and only if F € (L 2)® H and
(L?) > dom(1f, 1,)()2.) 3 G = (E(), Ljp, 1) (1)9-G) 12)m
is a linear continuous functional. By the Riesz’s theorem this means that

(F(), Lty 1) (1)9.G) (12)an = (H, G) (12

with some H € (L?). But it follows from uniqueness of representation (11) for elements of (L2)
and (the proof of) (47) that H = f:z u)dLy, i.e.,

~

F € dom((1p, 1,)(1)3.)") & H € (I12) & /ftz F(u)dL, € (1?) & F e dom(/tz o(u)dL, )

t

(see (41)).
2) Let us show that dom(( fttlz oclAL)f‘) = dom (1, 4,)(-)9.). By definition, G belongs to

dom(( fttlz oclAL).*> if and only if G € (L?) and

(I2)@H > dom(/tz o(u)cTLu) 5 F s (/tZF(u)cTLu,G) .

t f
is a linear continuous functional. By the Riesz’s theorem this is possible if and only if
( fttz u)dLy, G)( 12) = = (F, H)12)qy With some H € (L?) ® H. But it follows from uniqueness

of representation (35) for elements of (L?) ® H and (the proof of) (47) that H = L, 1) (1)0.G,
ie.,

t1,t2

ZEPN *
Ge dom((/ 2odL),) S He (L))@H & 1,4,)()9.G € (L) ®H < G € dom (1 4,(-)d.)

t
(see (45)). O

Note that equalities (46) can be used as alternative definitions of the extended stochastic
integral and the Hida stochastic derivative.

Remark. Equality (47) can be written in the form

( / tzp(u)aTLu,G) _ / tz(F(u),auG)(Lz)duE / tz(aiF(u),G)(Lz)du,

f (L2) 31 f

therefore it is natural to write the operator fttlz o(u)dA L, formally as

/tz o(u)dL —/tza‘Lo u)du
u — u
t tp
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(cf. [17]), here 9!, is the formal operator conjugated to the Hida stochastic derivative at the point
u (cf. [27, 20]). Strongly speaking, now for fixed u € R the operators 9, and 9}, are not well-
definite (e.g., for G € (L?) 9,G is not uniquely defined), but such operators can be defined on
suitable spaces of test and generalized functions respectively; a detailed presentation will be
given in another paper.

Let us say several words about possible simple generalizations of the results of the present
paper. In the first place, instead of the Lebesgue measure on R one can use a non-atomic
measure o that satisfies some additional assumptions (cf. [22, 17]). In the second place, one
can consider a complex-valued Lévy process, define (L?) as the space of (classes of) complex-
valued functions, and obtain "complex versions" of results presented above (cf. [17]). In the
third place, one can consider the operators [, o (1)dLy, and 14(-). for any measurable A C R
using 1, instead of 1, ) in the corresponding places. Finally, it is possible to construct and to
study the extended stochastic integral and the Hida stochastic derivative in the case when one
uses instead of R a much more general space (cf. [22]).

Remark. Since the extended stochastic integral and the Hida stochastic derivative are not
continuous operators, it can be some problems with their applications. For example, the It6
stochastic integral has the following property: for any t1,tp,t3 € [0, +00], t1 < tp < t3,

/ttzo(u)dLu+/t:3o(u)dLu :/tt3o(u)dLu. (48)

1 1

This property, in particular, plays an important role in the theory of stochastic differential
and integral equations. Formally the extended stochastic integral also satisfies (48), but since
the domain of this integral depends on the interval of integration, the application of (48) in
some situations can be impossible. In the forthcoming paper we will consider the extended
stochastic integral of form (40), (42) and the Hida stochastic derivative of form (44) as linear
continuous operators on suitable riggings of (L?).
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Kawanoscoximit M.O. [Tpo poswiupeni cmoxacmuuni inmeepanu 3a npoyecamu Aesi // KapmaTcbki MaTe-
MaTuuHi rmy6aikarii. — 2013. — T.5, Ne2. — C. 256-278.

ITosHaummo gepes L mporec AesiHa [0, +-00). Y YacTUHHMX BUTTAAKAX, KOAM L — BiHepiBChKuMit umt
ITyacCOHiBChKIMI Tpo1Iec, 6y Ab-SIKY KBaAPaTUIHO iHTETPOBHY BUITAAKOBY BEAMUMHY MOXHA PO3KAa-
CTM Y PpsIA 3 TOBTOPHMX CTOXaCTUMYHMX iHTerpaAis 3a L Bia HeBumaakosux pyHKiA. 115 BAaCTUBICTD
L, BinOMa SIK BAQCTMBICTbh XaOTMUHOTO po3kaaay (BXP), Biairpae ay>ke BaXAMBY POAb Y CTOXAaCTH-
uHOMY aHaAisi. Ha Xaap, B3araai kaxyun, mpouec Aesi He Boaoaie BXP.

IcayroTh pisHOMaHITHI y3araabHeHHs BXP aast mporiecis AeBi. 3oxpema, mpu miaxoai Ito mpo-
nec AeBi L po3kaapaioTh y CyMy rayccCiBChbKOTO IIPOLIeCy Ta CTOXaCTMYHOTO iHTerpaaa 3a IIyacCOHiB-
CHKOIO BUITAAKOBOIO MipOIO, ICASI IIOTO BUKOPUCTOBYIOTh BXP AAST 060X AOAQHKIB 3 METOIO OTpU-
MmanHs y3ararbHeHOI BXP aast L. ITiaxia HyaaapTa Ta CkoyTeHca IOASITa€e y po3kAaAi KBaApaTHMUHO
iHTerpoBHOI BUITAAKOBOI BEAMYMHN Y PSIA 3 TOBTOPHMX CTOXaCTMYHMX iIHTErpaAiB BiA HEBUIIaAKOBUX
yHKIII 3a Tak 3BaHMMIM OPTOTOHAAI30BaHMMI LIEHTPOBaHMMIL IIPOLIeCAaMI CTeIeHiB CTpMOKiB, I1i
mponecy MobyAoBaHi 3 BukopucTaHHsIM caddldg Bepcii L. ITiaxia AnTBMHOBa 3acHOBaHMIT Ha OPTOTO-
HaAi3allil HermepepBHMX IOAIHOMIB Y IPOCTOPi KBaAPATUYHO IHTETPOBHMX BUIIAAKOBMX BEAVYNH.

Y wmitt craTTi MM 6yAyeMO PO3IIMPEeHNIi CTOXaCTUUIHIMIA iHTerpaa 3a ImporiecoM AeBi Ta cTroxacT-
4Hy noXxipHy XiaM y TepMiHax ysaraabHeHol BXP, 3amporoHoBaHOi AMTBMHOBMM; BCTAHOBAIOEMO
AesIKi BAACTVBOCTI IIVIX OIIEpaTopiB; Ta, IO € HaMOiABII Ba>XKAMBUM, II0Ka3yE€MO, IIIO PO3IIVIPEHi CTO-
XacTu4Hi iHTeTrpaAy, mobyAoBaHi i3 3acToCyBaHHSIM BUITIe3rapaHNX y3araabHeHb BXP, criiBmaaaroTh.

Kontouosi cnosa i ¢ppasu: mporiec AeBi, BAACTMBICTh XaOTMIHOTO PO3KAAAY, PO3IIMPEHIIA CTOXa-
CTUYHII iHTeTpaA, CTOXaCTUYHa IoXiaHa Xianm.

Kauanosckmit H.A. O pacuupennix cmoxacmuueckux unmeepanax no npoyeccam Aesu // Kapmarckue
MaTeMaTmdeckye mmyb6ankarym. — 2013. — T.5, Ne2. — C. 256-278.

O6o3naunm uepes L mporiecc Aesu Ha [0, +00). B uacTHBIX cAyuasix, Koraa L — BUHepOBCKmit
VIAV TTy aCCOHOBCKMIA IIPOIIECC, AIOOYIO KBaAPaTIIHO MHTETPUPYEMYIO CAYUalHYIO BEAMUMHY MOXXHO
Pa3A0XUTD B PSIA U3 TIOBTOPHBIX CTOXACTUUECKIUX MHTEIPAAOB ITO L OT HecAydalHbIX pyHKIMIA. ITO
CBOVICTBO L, M3BeCTHOE KaK CBOMCTBO XaoTudeckoro pasaoxerns (CXP), urpaeT oueHb BaXXHYIO POAb
B cToxacTrdeckoM aHaamse. K coxanenmo, Boobie rosopst, mpouecc Aesu He mmeeT CXP.

Cymectsyror pasanusble o6o6menyss CXP aast mporiecco Aesn. B wacTHOCTHM, Ipy IOAXOAE
Hro nponecc AeBr L pacKAaAbIBalOT B CyMMy I'ayCCOBCKOTO ITPOLIECca ¥ CTOXaCTUMYeCKOro MHTerpa-
Aa TIO TTyaCcCOHOBCKOM CAYUalfHOM Mepe, 3aTeM MCHOAB3YIOT CXP AAst 060MX cAaraeMbIX C IeABIO
noayuernst obobmierHoro CXP aast L. TToaxoa Hyanapra m CxoyTeHca COCTOUT B pa3sAOKeHNN
KBaAPaTUYHO MHTEIPUPYEMON CAYYAITHOM BEAMUMHBI B PSIA M3 MOBTOPHBIX CTOXACTMUYECKMX MHTe-
I'pan0B OT HECAYUalHBIX (DYHKIINMIA TI0 TaK Ha3bIBaeMbIM OPTOTOHAAM30BaHHBIM IEHTPMPOBAHHBIM
IIpoIieccaM CTeTleHel CKadKoB, STV IPOIecchl CKOHCTPYMPOBAHbI € MCIIoAb30BaHMeM cddldg Bepcym
L. IToaxoa AMTBUMHOBa OCHOBaH Ha OPTOrOHAAM3AIMM HEMPEPhIBHBIX MOAMHOMOB B IIPOCTPAHCTBE
KBaAPaTUYHO VHTETPUPYEMBIX CAYYaliHbIX BeANUVIH.

B sT0I1 cTaThe MBI KOHCTPYMpyeM pacIlMPeHHbI CTOXaCTMYECKUI MHTEerpaA IIo Ipoueccy Aesu
M CTOXaCTUIECKYIO IIPOM3BOAHYIO XMABI B TepMmHax ob60611eHHOro CXP, mpeAA0XXeHHOro AMTBIUHO-
BBIM; yCTaHaBAVBaeM HEKOTOPbIe CBOVICTBA STYX OIlepaTOPOB; 1, YTO HaboAee BasKHO, IIOKa3bIBaeM,
YTO pacIIMpeHHbIe CTOXaCTUYeCKMe MHTErpaAbl, IOCTPOEHHbIE C MCIOAB30BAHMEM BbIIIEYITOMSIHY-
ThIX 06061IeHMT CXP, cOBIaAAOT.

Kntouesvie cnoea u ¢ppaser: mporrecc AeBr, CBOMCTBO XaOTUIECKOTO Pa3A0XKeHMsI, PacIIpeHHbIN
CTOXaCTUYECKMIt MHTerpaA, CTOXacTUIecKasl MpOU3BOAHAsT XVADL.



