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NEW INTEGRAL FUNCTIONS GENERATED BY RISING FACTORIAL POWERS

We consider new nonelementary functions such as the Fresnel integrals, generated by rising
factorial powers. Graphs of such functions are plotted and some of their properties are proved. It
is shown, that new integral functions are solutions of second order ordinary differential equations
with variable coefficients.
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INTRODUCTION

Mathematical models of various natural and industrial processes often lead to problems,
such that it is impossible to obtain exact solutions of which by means of well-known classical
methods. This is the reason for further development of function theory and numerical analysis.
Enlargement of an “library” of nonelementary functions leads to the enlargement of tasks that
can be solved in closed form. That’s why the introducing of new nonelementary functions and
studying of their properties are actual tasks.

In [7], [8] we investigate new nonelementary functions Sin(x), Cos(x), constructed by re-
placing in a power series of classical transcendental functions sin x, cos x falling factorial pow-
ers n' (i.e. usual factorials) by corresponding rising factorial powers n”. Replacing in the

X X
Fresnel integrals [ cost?dt, [ sint?dt trigonometric functions by the functions Cos(x), Sin(x),
0 0

we get new real functions

C(x) = /0 “Cos (P)dt, S(x) = /0 " Sin (£2)dt.

Note, that the Fresnel integrals were originally used in the calculation of a field intensity in
an environment related to the bending of light around opaque objects (in diffraction theory).
Recently the Fresnel integrals and their various generalizations have been used in vibration
theory, in the design of highways and railways, etc (see, for example, [1], [3], [5], [10]-[16], [18]
and the references given there).

The aim of this paper is to study the functions C(x), 5(x).
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1 PRELIMINARIES AND NOTATIONS

For an arbitrary x € R and m € IN the factorial power m with the step of k € R is the

expression
X = x(x 4 k) (x +2Kk) .- (x o+ (m— 1K),

Factorial power x"{k} is called rising if k > 0, and is called falling if k < 0. By definition, put
x0} = 1. If k = 0, then we have a simple power, i.e. x™{0} = x.

Rising factorial powers with the step of 1 and falling factorial powers with the step of (—1)
we will denote by

=M = (1) (xFm— 1), =y = x(x—1) - (x—m+ 1),

respectively.

Different notation of factorial powers are used by other authors (see [4], [6], [9], [17]). For
example, a rising factorial power m with the step of 1 often denoted by the Pochhammer sym-
bol (x)p, i-e. (x)m = x™.

Relation between the factorial function m! and rising (falling) factorials is expressed by the
formula

m! = 1" = m™.

The main properties of falling factorial powers with the step of (—1) and rising factorial
powers with the step of 1 are given by the formulas

Ax™ = mx™=1, AxX™ = mx™ 1,

respectively, where Af(x) = f(x + 1) — f(x) is a forward difference of a function f(x) and
Af(x) = f(x) — f(x — 1) is a backward difference of a function f(x).

2 FuNCTIONS Cos (x), Sin (x), DEFINED BY THE RISING FACTORIAL POWERS

The known power series

- (D" o0 v (5D oy
cosx = nE:O ). " = n§:o (2 X", D)
e (D" o e (D) 241
sinx = n§:o 2nt 1) X = ,;:o (on + 120 X (2)

can be treated as the series constructed with the help of falling factorial powers.
In analogy to these series in [7], [8] we investigate new nonelementary functions Cos(x),

Sin(x), constructed with the help of rising factorial powers
_1)11 A2 A4 (—1)”3{2"

_ . ( 2n __ _
Cos(x)—nZ::OQn)%x =1 2-3+4-5-6-7 "'+2n-(2n+1)~...~(4n—1)

+...,

x5 (_1)nx2n+1
 (2n+1)-2n+2)-...-(4n+1)

4.
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It is clear that

Cos(x Z 4 2_n 1; 1! X, (3)
& (=1 (2n —2)!
Sin(x) = Z 4n£§)_ )t )

Absolutely convergence on the real axis of the series (3) and (4) can easily be shown.
In [8] it is also proved that

Cos(x) = 1+2v/x (Cos Z s(@) - sin2c<g>>, 5)

Sin(x) = 2/x <cos % C (g) +sin Z S (%})) 6)

where C(p) and S(p) are the real Fresnel integrals (cosine-integral and sine-integral) which
defined by formulas (see, for example, [2], [17])

~ [Teosat = ¥ (=1)" an+1
C(P)—/Ocost dt_g)mp 1 .
[ee] _1 n
e /Opsm it = nX::O (4n +(3)(2)11 +1)! pr (8)

Given (7), (8), the formulas (5), (6) can be rewritten as

N
Cos(x) =1 +2\/§/ ’ sin<t2~|— f)dt‘,
0 4

NS
. . z 2 E
Sin(x) = Zﬁ/() cos(t 4>dt.
Some authors define the Fresnel integrals as

P 2 P 2
C*(p) :/0 cos%dt, S*(p) :/0 sin%dt.

Then the functions C*(p), S*(p) can be represented in the following form

o 13 s (1) e ().

Sin(x) = V27y/x (COS % C*( > = S*( ij'c))

Figures 1, 2 show the graphs of functions y = Cos(x) and y = Sin(x).
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Fig. 1. Graph of the function y = Cos(x)  Fig. 2. Graph of the function y = Sin(x)

3 INTEGRAL FUNCTIONS C(x), 5(x) AND THEIR PROPERTIES

We will denote by C(x) the function defined by formula
X
- / Cos (£2) dt. 9)
0

By (3), (7) we obtain the following series expansion of function C (x):

i (2”—1) fAntl
= n—l )N (4n+1) '

Then, since

= (“1)'(n 1! radrtt i
-2 2
’;(471 —1)!'(4n + 1) X Z 16” Sg) (28)!1(2n —2s)!(4n — 45 + 1)
0 _1 n 4n+5 n 1
+2 Z ( )n+1 | |
= 16 — (25 +1)!(2n — 25 +1)!(4n — 45 + 3)
=—2x+4 Z —— Z (=1)" Al
42” =0 '(4n +1)24n+1

i A2 Z (—-1)" A3
2 (2 + 1 '42n+1 2n+ 1) (4n 3203 % 7

The graph of y = C(x) is plotted in the Figure 3 (the dashed line is graph of the function
Y= —x).
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Fig. 3. Graph of the function y = C(x)  Fig. 4. The graph of the function y = 5(x)
Define the following function
X
- / Sin(#2) dt. (11)
0

From (11) and (4) we obtain presentation of function S (x) in the form

= )T 2n=2)1 4,4
. 12

n; 4n— N (En—1)" 12
Since
i n 1(271—2)' Anet _x_3§: (_1>nx4n n 1
= ( 4n— N(4n—1) 2= 16t 2 (25+1)1(2n —2s)!(4n — 4s + 1)

x3 ®© (1 nx4n n 1

LE ey
2 & 16" 2 (29)1(2n — 25+ 1)!(dn — 4s + 3)

(e

- —1 n —1 n
=) (Zn—{(—l)!)42”+1 L Z + (2n)! (4(n+)1)24"+1 L

4 i (=" ane2 Z (=" A3
(2n)1 427 2 2n+1)! (dn 1 3)2m3 "

S0 = 4(sim % C(3) —cos 5 (3)). (13

Graph of the function y = S(x) is plotted in the Figure 4.
The following proposition establishes a relation between the new functions C(x), S(x) and
classical Fresnel integrals.
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Proposition 3.1. Forallx € R

A 2820 _ 2(X 2(X
(C(x) +x)* + §%(x) = 16(C (2)+5 (2)) (14)
Proof. Squaring and adding the formulas
2 2

Cosx—C(E) —i—sinx—S

4 \2 4 <E>:C(x>+x

2 4 ’
2 2

. X x X7 /x\ S(x)
sin 7 C(3) —eos 7 5(3) = 4
which may be derived from (10), (13) respectively, we obtain formula (14). 0

The following proposition establishes a relation between the functions C(x), 5(x) and
Cos(x), Sin(x).

Proposition 3.2. Forall x € R
~ . 2
(C(x) +x) + 82(x) = % ((1 — Cos (x2)> + Sinz(x2)> . (15)
Proof. From (5), (6) it follows that

(1 — Cos (x))* + Sin?(x) = 2x <c2 (g) + 52 <§>)

Hence, using (14), we get (15). O

4 DIFFERENTIAL EQUATIONS OF FUNCTIONS S(x), C(x)

In this section it is shown that both functions C(x), 5(x) are solutions of the Cauchy prob-
lem for the inhomogeneous linear ordinary differential equation of second order with contin-
uous coefficients.

Proposition 4.1. The functions C(x), S(x) are solutions of the Cauchy problems
dxy’ — 4y + Py = —x*—4, y(0)=0, y'(0) =1; (16)
dxy” — 4y’ + 23y = 4x%, y(0) =0, y'(0) = 0. (17)
respectively.

Proof. Using (9), (11) we obtain that the functions C(x), S(x) satisfy the corresponding initial
conditions. It remains to check that these functions are the solutions of differential equations
from (16), (17).

First of all, using (10), we find the first and second derivatives of the function C (x)

2 2

C'(x) :1—2x<sinxzc<g) —COS%S(%)), (18)

C’(x)=—-2 <sinxz2 C(g) — cos xzz S (g)) — x? <COS xzz C(g) + sinxz2 S <§)> . (19)
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We obtain the differential equation (16) from (3), (18), (19) by elimination the expressions

COS%C(%) —i—sianZS(%) , COS%S(%) —sin%C(%) . (20)

The proof for 5(x) is similar. We obtain the differential equation (17) by elimination the

expressions (20) from (4) and formulas

(1]

(2]

(3]

(4]

(5]

6]
(7]

(8]

§’(x) =2x <cos xzz C(%) + sin xzz S<%>>,

2 2

/() = x -2 (sin 3 o(3) ~cos T 5(3)) +2(cos T c(3) +sn 5 (3)).
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T'oit T.IT., 3aTopcbkt P.A. Hosi inmezpanori yHKyit, nopodceri spocmaouymu pakmopiaioHumu cie-
nengmu // Kapmarceki MaTemarmusi my6aixarii. — 2013. — T.5, N2. — C. 217-224.

3anporioHOBaHI HOBi HeeaeMeHTapHi pyHKIIT Tuy iHTerpanis dpeHeas, mobyaosaHi IpM A0-
oMo3i 3pocTarounx pakTOpiaAbHMX CTeIleHiB. BcTaHOBAEHI AesIKi BAACTMBOCTI IVIX iHTETrpaAbHMX
dyukIii, mobyaosaHi ix rpadiky. BuseaeHi 3BmuaiiHi AMdpepeHITiaAbHI PiBHSIHHS, O3B sI3KaMM
SIKIX € HOBI iHTeTpaAbHi pyHKIIIT.

Kntouosi cnosa i ppasu: dpakTopiaAbHMI CTETiHD, 3pOCTAIOUNMI (PaKTOpiaAbHWIL CTEIIHD, iHTerpa-
an DpeHeas1, creneHeBi psiay, 3apada Ko,

T'orr T.IL., 3aropckmit P.A. Hosvie unmezpanvtoie GYHKYUL, NOPOONHCEHHbIE B03PACAOUUMU aKio-
puanorvimu cmenensmy // Kapnatckme maremarmdeckue mybankarym. — 2013. — T.5, Ne2. — C.
217-224.

PaccMaTpuBaroTCsl HOBble HedAeMeHTapHble (PyHKIMM TUIIa MHTerpaAoB DpeHeAs], OPOXAEH-
Hble BO3PaCTaIOIIMMI (paKTOPMAABHBIMU CTENIeHSIMA. Y CTaHOBAEHbI HEKOTOPbIe CBOMCTBA STUX UH-
TerpaAbHBIX (PYHKIIIA, OCTPOEHBI MX Ipadpukit. BeIBeAeHDI 0OBIKHOBEHHbIE AMdpdpepeHIIaAbHbIe
yPpaBHEHMsI, pellleHIsIMUA KOTOPBIX eCTh HOBble MHTeTpaAbHbIe pyHKIMIL.

Krwouesvie cnosa u ppasvr: dpaxTOpuaAbHas CTelleHb, BO3pOCTalolasl (pakTopuasbHasl CTeTleHb,
yHTerpaabl @peHeas], CTelleHHbIe PSAbI, 3arada Ko



